找到 41 条结果 · 风电变流技术
考虑时序特征缺失值动态插补的超短期风电功率预测
Ultra-short-term Wind Power Forecasting Considering Dynamic Imputation of Missing Values in Temporal Features
李丹 · 唐建 · 缪书唯 · 黄烽云 等5人 · 中国电机工程学报 · 2025年17月 · Vol.45
针对风电功率预测中时序数据缺失问题,提出一种融合动态插补机制的超短期预测方法。通过设计嵌入时滞衰减插补策略的门控循环单元,动态捕捉缺失值前后观测间的不规则时滞依赖,并结合掩码自相关分析确定最优时窗与衰减参数。构建序列到序列模型以协调输入特征维度变化,输出15分钟至4小时的功率预测序列。实验表明,该方法在含缺失数据场景下较传统方法具有更高精度与稳定性。
解读: 该时序特征缺失值动态插补技术对阳光电源的智能运维和储能系统具有重要应用价值。可直接应用于iSolarCloud平台的风电场监控预测模块,提升发电功率预测精度,优化储能调度策略。对ST系列储能变流器的功率调节和PowerTitan系统的容量配置提供更准确的数据支撑。该方法可与现有GFM/GFL控制算法...
基于广义动态因子模型与生成对抗网络的风电场景生成
Wind Power Scenario Generation based on the Generalized Dynamic Factor Model and Generative Adversarial Network
Young-ho Cho · Hao Zhu · Junghyeop Im · Duehee Lee 等5人 · IEEE Transactions on Power Systems · 2025年9月
为开展资源充足性研究,我们利用时空特征(空间和时间相关性、波形、边际和爬坡率分布、功率谱密度以及统计特征)合成了分布式风电场的多个长期风电情景。在情景中生成空间相关性需要为相邻风电场设计公共因子,为远距离风电场设计对立因子。广义动态因子模型(GDFM)可以通过互谱密度分析提取公共因子,但它无法精确复制波形模式。生成对抗网络(GAN)可以通过假样本判别器验证样本,从而合成能体现时间相关性的合理样本。为结合GDFM和GAN的优势,我们使用GAN提供一个滤波器,从观测数据中提取包含时间信息的动态因子,...
解读: 该风电场景生成技术对阳光电源储能与并网产品具有重要应用价值。通过广义动态因子模型与GAN网络的结合,可以准确预测风电功率波动特征,这对ST系列储能变流器的调度策略优化和PowerTitan系统的容量配置具有重要指导意义。该方法可集成到iSolarCloud平台,提升风储联合运行的经济性。同时,其时空...
多步联合概率海上风电功率预测:一种基于置信度触发聚类的缺失数据容忍模型
Multistep Joint Probabilistic Forecasting of Offshore Wind Power: A Confidence-Triggered Clustering Missing-Data Tolerant Model
Zhengganzhe Chen · Chenglong Du · Bin Zhang · Chaoyang Chen 等5人 · IEEE Transactions on Industrial Informatics · 2025年9月
准确可靠的海上风电场集群发电预测对于多能电力系统的低碳运行至关重要。在实际应用中,由于数据采集系统的各种故障问题或恶劣海洋环境中的通信中断,测量数据可能并不总是完整的,而关键数据的缺失可能会显著降低概率模型的可信预测精度。为解决这一问题,本文提出了一种基于置信触发模糊聚类分位数增强变压器(CFCQET)的新型容忍缺失数据模型。首先,开发了一种基于分位数增强变压器的多步风电概率预测方法,其中预测值通过条件置信期望进行迭代更新。然后,基于风电场的时空特征,构建了海上风电场的模糊C均值(FCM)聚类模...
解读: 从阳光电源新能源综合解决方案提供商的视角来看,这篇论文提出的海上风电集群多步概率预测技术具有重要的战略参考价值。虽然论文聚焦风电场景,但其核心方法论对阳光电源在光伏电站群、风光储一体化项目以及多能源管理系统中的功率预测能力提升具有直接借鉴意义。 该技术的核心创新在于缺失数据容忍机制和置信度触发策略...
考虑尾流时空耦合的风电场功率预测
Wind Farm Power Prediction with Wake Spatiotemporal Coupling
Yueteng Xie · Fangming Deng · Wenxiang Luo · Bo Gao 等6人 · IEEE Transactions on Sustainable Energy · 2025年9月
在动态气象条件下,风电机组群的功率预测面临尾流效应时空耦合的挑战。本文提出一种考虑尾流效应时空动态耦合的风电场功率预测方法。通过融合风机空间分布与实时气象数据构建动态图网络,实现尾流传播路径的自适应表征。设计双驱协同框架,在时空维度嵌入物理规律约束,缓解数据驱动模型在极端工况下的物理失真问题。构建时空解耦特征增强架构,捕捉风机间空间关联及多时间尺度气象特征。实验结果表明,该方法显著提升预测精度。
解读: 该风电场功率预测技术对阳光电源储能和智能运维产品线具有重要应用价值。其时空耦合建模方法可优化ST系列储能变流器的调度策略,提升PowerTitan大型储能系统在风光储多能互补场景下的运行效率。尾流效应动态预测技术可集成到iSolarCloud平台,增强新能源电站群的功率预测精度,为储能调度和电网调峰...
一种基于张量的风电场动态等值建模聚类方法
A Tensor-Based Clustering Method for Dynamic Equivalent Modeling of Wind Farms
Yihao Yang · Yijun Xu · Wei Gu · Lamine Mili 等6人 · IEEE Transactions on Sustainable Energy · 2025年9月
采用详细风电机组模型仿真大规模风电场计算成本高昂,亟需兼顾精度的简化建模方法。针对复杂风速条件与网络结构带来的风电场暂态等值精度难题,本文首次提出一种基于张量分解的聚类方法,通过合理分组捕捉风电场高维动态特征,实现精确降阶建模。首先构建保持时空特性的张量结构数据集,进而设计兼顾稀疏性与平滑性的张量分解策略以提取低维特征并指导聚类;最后定制网络聚合策略降低功率损耗误差。多种布局、故障与风况下的仿真结果验证了该方法的优越性能。
解读: 该张量聚类建模方法对阳光电源的大型储能及风电产品具有重要应用价值。可直接应用于PowerTitan储能系统的多机组协调控制和ST系列储能变流器的群控优化,通过降维聚类提升计算效率。对于风电场接入的储能系统,该方法能更精确地预测风电波动特性,优化储能容量配置和调度策略。技术创新点在于通过张量分解捕捉高...
针对风速波动的风力发电系统变流器开路故障鲁棒诊断方法
Robust Diagnosis Method for Open-Circuit Faults in Wind Power System Converters with Special Attention to Wind Speed Fluctuations
Ying Zhu · Bin Sun · Zhinong Wei · IEEE Transactions on Energy Conversion · 2025年5月
本文提出了一种用于风力发电变流器开路故障(OCF)的鲁棒故障诊断框架,重点解决两大挑战对故障诊断的影响,即风速波动(由塔影效应、风切变和复杂环境条件引起)和噪声干扰。本文的主要贡献包括:1)采用派克变换的实时电流幅值归一化(RCAN)机制,用于动态信号校正;2)一种风自适应采样(WAS)策略,用于同步数据采集;3)一种新颖的混合深度学习架构,结合用于时间分析的改进门控循环神经网络(IGRNN)和用于空间特征提取的马尔可夫转移场残差网络(MTF - ResNet)。该方法通过WAS采样处理经RCA...
解读: 从阳光电源的业务视角来看,这项针对风电变流器开路故障的鲁棒诊断技术具有显著的跨领域应用价值。尽管研究聚焦风电系统,但其核心方法论与阳光电源的光伏逆变器、储能变流器等电力电子设备的故障诊断需求高度契合。 该技术的创新点在于通过实时电流幅值归一化(RCAN)机制和风速自适应采样策略,有效应对了动态工况...
FDCA-DSTGCN:一种基于频域信息增益与动态趋势感知的风电场群功率日前预测模型
FDCA-DSTGCN: A Wind Farm Cluster Power Day-Ahead Prediction Model Based on Frequency Domain Information Gain and Dynamic Trend Sensing
Mao Yang · Jiajun Niu · Bo Wang · Dawei Huang 等6人 · IEEE Transactions on Sustainable Energy · 2025年5月
准确的风电场群功率预测对大规模风电接入的新一代电力系统至关重要。现有建模方法忽略风向及频域信息的作用,导致空间信息利用不足,预测精度提升受限。为此,本文提出一种融合频域信息增益与动态趋势感知的风电场群日前功率预测模型。首先,基于图论与多信息渐进融合进行集群划分并设置虚拟信息节点;其次,提出时间窗内主导风向识别方法,构建基于主导风向与风速的动态加权有向图结构;进而,设计引入频域增益通道注意力机制的动态时空图卷积网络(FDCA-DSTGCN)完成预测。在中国内蒙古某风电场群的实证结果表明,所提方法较...
解读: 该风电场群功率预测技术对阳光电源储能与电网侧产品具有重要应用价值。首先可应用于ST系列储能系统的调度优化,通过频域信息增益提升储能容量配置精度,优化充放电策略。其次可集成到iSolarCloud平台,为新能源电站群的智能运维提供更准确的功率预测支持。该模型的动态时空图卷积网络架构也可迁移应用于光伏电...
基于SCADA数据的周期增强型Informer模型用于短期风电功率预测
Periodic-Enhanced Informer Model for Short-Term Wind Power Forecasting Using SCADA Data
Zhao-Hua Liu · Long-Wei Li · Hua-Liang Wei · Ming Li 等6人 · IEEE Transactions on Sustainable Energy · 2025年4月
针对风电场SCADA系统提供的丰富运行与环境数据,提出一种周期增强型Informer模型用于短期风电功率预测。首先,采用基于v-p曲线与四分位法结合的方法滤除稀疏离群点,并利用DBSCAN算法去除功率曲线中的聚集噪声;其次,基于最大信息系数筛选多特征输入集以提升数据利用效率;进而设计时序卷积网络提取输入特征的标量投影,并融合局部与全局时间戳构建周期信息增强的嵌入层;最后,在Informer模型中引入多尺度深度融合模块,实现跨时间尺度特征的深层整合,有效避免了模型加深带来的资源浪费与过拟合问题。实...
解读: 该周期增强型Informer模型对阳光电源的智能运维和储能系统具有重要应用价值。首先,该模型的多特征输入与时序预测技术可直接应用于iSolarCloud平台的发电预测模块,提升风光储多能互补系统的调度效率。其次,模型的周期性特征提取方法可优化ST系列储能变流器的能量管理策略,特别是在PowerTit...
基于时空图对比学习的风电功率预测
Spatiotemporal Graph Contrastive Learning for Wind Power Forecasting
Guiyan Liu · Yajuan Zhang · Ping Zhang · Junhua Gu · IEEE Transactions on Sustainable Energy · 2025年2月
精确且鲁棒的风电功率预测对电力系统的安全稳定运行至关重要。基于图卷积网络的混合时空预测模型因在空间特征提取方面的优势而受到广泛关注,但其性能易受数据噪声和缺失影响导致的图结构质量下降制约。本文提出一种基于时空图对比学习的混合深度学习模型,其编码器结合自适应图卷积网络与LSTM以捕捉细粒度时空依赖关系。为提升编码器对数据噪声的鲁棒性,我们在特征层和拓扑层引入数据增强,并设计了时序与空间双重视角的对比学习辅助任务。此外,通过融合静态图与可学习参数矩阵构建自适应图以捕获更全面的空间关联。在两个真实数据...
解读: 该风电功率预测技术对阳光电源储能和智能运维产品线具有重要应用价值。首先可集成至ST系列储能变流器和PowerTitan系统的能量管理系统(EMS)中,提升风储联合运行的调度精度。其次,该技术的时空图对比学习方法可优化iSolarCloud平台的预测算法,提高新能源电站群的发电预测准确性。特别是其抗噪...
基于OWT-STGradRAM的超短期时空风速预测
Ultra-Short-Term Spatio-Temporal Wind Speed Prediction Based on OWT-STGradRAM
Feihu Hu · Xuan Feng · Huaiwen Xu · Xinhao Liang 等5人 · IEEE Transactions on Sustainable Energy · 2025年2月
考虑风电场中风机站点的方向与距离特征有助于提升风电功率预测精度。本文提出一种基于正交风向变换时空梯度回归激活映射(OWT-STGrad-RAM)的深度学习时空预测方法。该模型将风电场编码为图像,各风机作为图像中的点,通过时空融合卷积网络集成风速、温度和气压等多源数据进行特征融合与预训练,构建特征数据集。利用OWT消除不同主导风向的影响,结合STGrad-RAM刻画风机节点间的方位与距离关系,增强空间特征的可解释性,并用于风速预测。实验结果表明,所提方法在预测精度上显著优于对比模型。
解读: 该风速预测技术对阳光电源的储能和风电产品具有重要应用价值。OWT-STGradRAM模型通过深度学习实现的高精度风速预测,可优化ST系列储能变流器的调度策略和PowerTitan储能系统的容量配置。在风电场应用中,该技术可提升风电并网点功率预测精度,有助于改进储能系统的功率平滑控制和调频调峰性能。模...
预算约束下的协作式可再生能源预测市场
Budget-Constrained Collaborative Renewable Energy Forecasting Market
Carla Gonçalves · Ricardo J. Bessa · Tiago Teixeira · João Vinagre · IEEE Transactions on Sustainable Energy · 2025年1月
准确的可再生能源发电功率预测对提升电力系统中可再生能源容量及实现可持续发展目标至关重要。本文强调将去中心化的时空数据融入预测模型的重要性,并针对数据分散所有权带来的挑战,提出促进数据共享的激励机制。主要贡献包括:a)通过比较分析推荐高效且可解释的样条LASSO回归模型;b)设计数据与分析市场中的 bidding 机制,确保数据提供者获得公平补偿,并支持买卖双方表达价格诉求。此外,提出一种结合价格约束、避免冗余特征分配的时间序列预测激励机制。实验结果表明,所提方法显著提升了预测精度,风力发电数据的...
解读: 该研究的可再生能源预测市场机制对阳光电源的储能和光伏产品线具有重要应用价值。首先,高精度的时空预测模型可直接应用于PowerTitan储能系统的调度优化,提升储充策略的经济性。其次,样条LASSO回归方法可集成到iSolarCloud平台,为分布式光伏电站和储能系统提供更准确的发电/负荷预测。通过数...
漂浮式海上风力机的高阶多物理场建模及其气动设计与载荷管理
Advanced multi-physics modeling of floating offshore wind turbines for aerodynamic design and load management
Haoda Huang · Qingsong Liub · Gregorio Iglesiasc · Chun Lia · Energy Conversion and Management · 2025年1月 · Vol.346
摘要 漂浮式海上风力机(FOWTs)在提升海上风电竞争力方面具有显著优势。然而,其运行过程涉及复杂的动力学行为,表现为多种载荷来源、显著的时间变异性以及高度非线性特征。深入理解主导FOWT行为的多物理场耦合机制及子系统间的相互作用,对于提高运行安全性、增加发电功率并推动商业化部署至关重要。为应对上述挑战,本研究通过融合计算流体动力学(CFD)与有限元方法(FEM),构建了一个高保真度、完全耦合的气动-弹性-水动-系泊多物理场分析框架。以安装在半潜式平台上的NREL 5 MW水平轴风力机(HAWT...
解读: 该多物理场耦合建模技术对阳光电源海上风电变流器产品具有重要价值。研究揭示的浮式风机功率波动增大(6.84%效率损失)和复杂载荷特性,为我司SG系列大功率风电变流器的控制策略优化提供依据。可借鉴其流固耦合分析方法,改进变流器在动态工况下的MPPT算法和GFM并网控制,提升功率平滑能力。同时,该研究的应...
STE-HOLNet:一种融合时空特征、动态概念漂移检测与自适应校正的风电功率预测新方法
STE-HOLNet: A new method for wind power prediction by integrating spatio-temporal features, dynamic concept drift detection and adaptive correction
Xiongfeng Zhao · Hai Peng Liu · Huaiping Jin · Xueping Shen 等5人 · Energy Conversion and Management · 2025年1月 · Vol.344
摘要 风电具有高度的不确定性和非线性,其时间序列通常表现出多周期性特征和概念漂移现象,这对实现高精度预测构成了重大挑战。本文提出了一种基于时空特征增强并结合动态在线校正机制的混合深度学习预测模型——时空增强型混合在线学习网络(Spatio-temporal Enhanced Hybrid Online Learning Network, STE-HOLNet),该模型通过改进的时间编码机制与深层网络结构紧密集成,实现了实时且高精度的风电功率预测。首先,引入一种改进的Time2Vec模块(E-Ti...
解读: 该风电功率预测技术对阳光电源储能系统具有重要应用价值。STE-HOLNet模型的概念漂移检测与自适应在线学习机制,可直接应用于ST系列PCS的功率预测模块,提升储能系统对风电波动的响应能力。其时空特征增强方法能优化iSolarCloud平台的预测性维护算法,降低RMSE达36.93%的性能可显著改善...
基于层次图神经网络与极值理论的短期区域风电功率预测方法
Short-term regional wind power forecast method based on hierarchical graph neural network and extreme value theory
Menglin Liab · Ming Yang · Yixiao Yuab · Energy Conversion and Management · 2025年1月 · Vol.341
摘要 从电力系统运行者的角度来看,管辖区域内风电总出力潜力相比单个风电场更受关注。挖掘目标区域内多个风电场站点之间的时空依赖关系可显著提升预测性能。然而,大量风电场由于不同空间尺度天气系统的连续性所引发的复杂相关性,给建模带来了不可忽视的挑战;此外,基于均方误差的传统损失函数在应对极端事件时表现出固有的局限性。为解决上述问题并进一步提高预测精度,本文构建了一种结合修正模块和基于极值理论改进损失函数的层次化时空图神经网络模型。首先,综合考虑地理距离信息和长期气候特征,采用凝聚式层次聚类方法将区域划...
解读: 该分层图神经网络区域风电预测技术对阳光电源储能系统(ST系列PCS、PowerTitan)具有重要应用价值。精准的区域风电预测可优化储能系统充放电策略,提升风储协同效率。其极值理论改进损失函数可增强极端工况预测能力,为iSolarCloud平台的预测性维护提供算法支撑。时空依赖建模方法可应用于多站点...
一种面向多地点短期风速预测的以位置为中心的Transformer框架
A location-centric transformer framework for multi-location short-term wind speed forecasting
Luyang Zhao · Changliang Liu · Chaojie Yang · Shaokang Liu 等6人 · Energy Conversion and Management · 2025年1月 · Vol.328
准确的时空风速预测在电力系统优化和可再生能源效率提升中起着至关重要的作用。然而,传统模型通常将多个地点的历史风速数据合并到统一的特征通道中,这种做法削弱了其捕捉空间相关性的能力,从而降低了预测精度。本研究提出,在建模时空关系时保持各位置特有的差异性有助于提升预测性能。基于这一前提,本文构建了一种新颖的基于Transformer、具有以位置为中心架构的预测框架,并引入了若干关键创新:(1)一种时空门控融合单元,能够动态整合地理坐标与时间风速数据,同时保留位置特异性信息;(2)一种重构的Transf...
解读: 该位置中心化Transformer风速预测框架对阳光电源新能源管理系统具有重要应用价值。精准的多点短期风速预测可直接优化ST系列储能变流器的充放电策略,通过时空关联建模提升风光储协调控制精度。其双重增强机制可集成至iSolarCloud平台的预测性维护模块,结合地理坐标与时序数据的门控融合单元能改进...
应对可再生能源电力系统中的鸭子曲线:一种基于iTransformer的多任务学习净负荷预测模型
Tackling the duck curve in renewable power system: A multi-task learning model with iTransformer for net-load forecasting
Jixue Pei · Nian Liu · Jiaqi Shi · Yi Ding · Energy Conversion and Management · 2025年1月 · Vol.326
摘要 可再生能源的高比例渗透导致区域负荷模式发生显著变化,形成对电力系统运行方式产生深远影响的鸭子曲线现象。为实现对鸭子曲线场景的准确预测,本文提出一种结合iTransformer与多任务学习的日前净负荷预测方法,该方法综合考虑了光伏发电、风力发电和有功负荷等多种独立资源分量。首先,通过组合特征选择方法识别各单项预测任务的主导特征;随后,采用iTransformer作为主干网络构建具有强大学习时间依赖能力的预测模型;此外,将iTransformer与多任务学习相结合,以提取外部因素、各单项功率与...
解读: 该鸭子曲线净负荷预测技术对阳光电源储能系统具有重要应用价值。通过iTransformer多任务学习模型精准预测光伏、风电及负荷波动,可优化ST系列PCS的充放电策略,提升PowerTitan储能系统在高比例新能源场景下的调度效率。该方法识别的周期性和波动性特征可集成至iSolarCloud平台,实现...
基于多图神经网络辅助双域Transformer的风力发电时空预测
Spatiotemporal forecasting using multi-graph neural network assisted dual domain transformer for wind power
Guolian Hou · Qingwei Li · Congzhi Huang · Energy Conversion and Management · 2025年1月 · Vol.325
摘要 准确预测风力发电量对于风电场的运行与维护决策至关重要。随着风电机组规模和容量的不断增加,综合考虑时间与空间特征已成为提高预测精度的关键。本文提出一种新颖的多步风力发电时空预测方法,该方法采用多图神经网络辅助的双域Transformer模型。具体而言,为充分表征风电机组之间的异质依赖关系,通过注意力机制构建多种关系图并将其融合为统一图结构。随后,设计了时空融合模块(STFM),结合图卷积网络与一维卷积神经网络,以同时捕捉时间与空间特征。此外,提出了时频双域Transformer(DDform...
解读: 该时空多图神经网络风电预测技术对阳光电源储能系统具有重要应用价值。可集成至iSolarCloud平台,为风储耦合场景下的ST系列PCS提供精准功率预测支撑,优化储能充放电策略。多步预测能力(10分钟至6小时)与PowerTitan储能系统的能量管理周期高度契合,可提升风储协同调度精度。其时频双域Tr...
时空特征增强的多类型可再生能源与负荷不确定性功率跟踪预测框架
Spatio-temporal feature amplified forecasting framework for uncertain power tracking of multitype renewable energy and loads
Yanli Liu · Ziwen Jia · Liqi Liu · Applied Energy · 2025年1月 · Vol.400
摘要 多类型可再生能源与负荷(如光伏、风电和电动汽车)的集成显著增加了电力供需两侧的不确定性,因此需要精确的预测技术以维持电网的安全稳定运行。然而,复杂的时空特征给现有预测方法带来了挑战,使其难以准确、及时地跟踪不确定性功率的瞬时变化。为此,本文提出了一种时空特征增强(STFA)预测框架,该框架可无缝嵌入当前先进的深度学习算法中。首先,构建了一个时空特征融合模块,逐步结合相空间重构、位置编码和掩码机制,通过一系列重组步骤增强时空特征,提升模型对不确定性波动的理解能力,从而支持训练过程。其次,在深...
解读: 该时空特征增强预测框架对阳光电源多条产品线具有重要应用价值。针对光伏SG系列逆变器,可通过精准预测辐照波动优化MPPT算法响应速度;对ST系列储能变流器和PowerTitan系统,能提升功率调度精度,降低电池循环损耗;在充电桩业务中可预测EV负荷峰谷,优化充电策略。该框架的自适应动态加权损失函数特别...
MFFDM-WLS:一种基于多粒度特征的时序分层风速时间序列一致性预测方法
MFFDM-WLS: A multi-granularity feature-based coherent forecasting method for temporal hierarchical wind speed time series
Yun Wang · Xiaocong Duana · Fan Zhang · Guang Wua 等7人 · Applied Energy · 2025年1月 · Vol.400
摘要 风能因其清洁和可持续的特性,已成为全球能源系统的重要组成部分。然而,风速的间歇性和波动性给风电出力带来了显著的不确定性,对电网并网造成了挑战。此外,与单一粒度预测相比,多粒度风速预测能够提供更丰富的信息,更有利于风电场的运行与规划。因此,为进一步提高风速预测的准确性与可靠性,并获得满足分层一致性的多粒度预测结果,本文提出了一种针对时序分层风速时间序列的基于多粒度特征的一致性预测方法MFFDM-WLS。首先,提出一种基于多粒度特征融合的深度模型(MFFDM),用于生成基础预测值。MFFDM采...
解读: 该多粒度风速预测技术对阳光电源储能系统(ST系列PCS、PowerTitan)具有重要应用价值。通过时间层级一致性预测,可优化iSolarCloud平台的预测性维护算法,提升风储协同控制精度。多粒度特征融合方法可应用于GFM/GFL控制策略的自适应切换决策,增强电网友好型并网能力。概率预测结果可为E...
一种新颖的数据驱动多步风功率点-区间预测框架,集成基于滑动窗口的双层自适应分解与多目标优化以平衡预测精度与稳定性
A novel data-driven multi-step wind power point-interval prediction framework integrating sliding window-based two-layer adaptive decomposition and multi-objective optimization for balancing prediction accuracy and stability
Xiwen Cui · Xiaoyu Yuab · Haowei Niu · Dongxiao Niu 等5人 · Applied Energy · 2025年1月 · Vol.397
摘要 风能对大规模并网和实现碳中和至关重要,因此需要准确且稳定的预测方法来应对风电数据固有的随机性和复杂耦合特性。本研究提出了一种创新的数据驱动型点-区间预测框架,旨在克服现有模型仅关注预测精度而忽略预测所需稳定性的局限性,从而减少由此带来的不确定性。该框架首先引入异常值处理机制,并采用一种新的基于滑动窗口的双层自适应分解策略,在避免信息泄露的同时将风电数据分解为规律性子序列。随后通过Lempel-Ziv复杂度分析对这些子序列进行分类,以最小化计算冗余。进一步地,有针对性地部署先进模型——包括倒...
解读: 该多目标优化风电预测框架对阳光电源储能系统(ST系列PCS、PowerTitan)具有重要应用价值。其点-区间预测方法可显著提升储能系统充放电策略的准确性与稳定性,MAE降低27-58%为iSolarCloud平台的预测性维护提供可靠的不确定性量化能力。多层自适应分解策略可集成至GFM/GFL控制算...
第 1 / 3 页