← 返回
风电变流技术 ★ 5.0

基于广义动态因子模型与生成对抗网络的风电场景生成

Wind Power Scenario Generation based on the Generalized Dynamic Factor Model and Generative Adversarial Network

作者 Young-ho Cho · Hao Zhu · Junghyeop Im · Duehee Lee · Ross Baldick
期刊 IEEE Transactions on Power Systems
出版日期 2025年9月
技术分类 风电变流技术
相关度评分 ★★★★★ 5.0 / 5.0
关键词 分布式风电场 风电场景合成 广义动态因子模型 生成对抗网络 时空特征
语言:

中文摘要

为开展资源充足性研究,我们利用时空特征(空间和时间相关性、波形、边际和爬坡率分布、功率谱密度以及统计特征)合成了分布式风电场的多个长期风电情景。在情景中生成空间相关性需要为相邻风电场设计公共因子,为远距离风电场设计对立因子。广义动态因子模型(GDFM)可以通过互谱密度分析提取公共因子,但它无法精确复制波形模式。生成对抗网络(GAN)可以通过假样本判别器验证样本,从而合成能体现时间相关性的合理样本。为结合GDFM和GAN的优势,我们使用GAN提供一个滤波器,从观测数据中提取包含时间信息的动态因子,然后将该滤波器应用于GDFM中,以体现合理波形的空间和频率相关性。对GDFM - GAN组合方法进行的数值测试表明,在合成澳大利亚风电情景方面,该方法的性能优于其他竞争方法。与以下替代方法相比,所提出的方法能更好地再现实际风电的统计特征:(i)使用从实际动态滤波器分布合成的滤波器的GDFM;(ii)不使用动态因子直接合成的GAN。

English Abstract

For conducting resource adequacy studies, we synthesize multiple long-term wind power scenarios of distributed wind farms by using the spatio-temporal features: spatial and temporal correlation, waveforms, marginal and ramp-rate distributions, power spectral densities, and statistical characteristics. Generating the spatial correlation in scenarios requires designing common factors for neighboring wind farms and antithetical factors for distant wind farms. The generalized dynamic factor model (GDFM) can extract the common factors through cross spectral density analysis, but it cannot closely replicate waveform patterns. The GAN can synthesize plausible samples representing the temporal correlation by verifying samples through a fake sample discriminator. To combine the advantages of GDFM and GAN, we use the GAN to provide a filter that extracts dynamic factors with temporal information from the observation data, and we then apply this filter in the GDFM to represent both spatial and frequency correlations of plausible waveforms. Numerical tests on the combined GDFM–GAN approach demonstrate performance improvements over competing alternatives in synthesizing wind power scenarios from Australia. The proposed method better reproduces the statistical characteristics of actual wind power compared with alternatives such as (i) GDFM with filters synthesized from distributions of actual dynamic filters and (ii) GAN with direct synthesis without dynamic factors.
S

SunView 深度解读

该风电场景生成技术对阳光电源储能与并网产品具有重要应用价值。通过广义动态因子模型与GAN网络的结合,可以准确预测风电功率波动特征,这对ST系列储能变流器的调度策略优化和PowerTitan系统的容量配置具有重要指导意义。该方法可集成到iSolarCloud平台,提升风储联合运行的经济性。同时,其时空特征建模思路可用于完善构网型变流器(GFM)的自适应控制算法,提高大规模新能源并网系统的稳定性。建议将此技术应用于储能调度与并网控制的产品升级中。