← 返回
风电变流技术 深度学习 ★ 5.0

基于层次图神经网络与极值理论的短期区域风电功率预测方法

Short-term regional wind power forecast method based on hierarchical graph neural network and extreme value theory

语言:

中文摘要

摘要 从电力系统运行者的角度来看,管辖区域内风电总出力潜力相比单个风电场更受关注。挖掘目标区域内多个风电场站点之间的时空依赖关系可显著提升预测性能。然而,大量风电场由于不同空间尺度天气系统的连续性所引发的复杂相关性,给建模带来了不可忽视的挑战;此外,基于均方误差的传统损失函数在应对极端事件时表现出固有的局限性。为解决上述问题并进一步提高预测精度,本文构建了一种结合修正模块和基于极值理论改进损失函数的层次化时空图神经网络模型。首先,综合考虑地理距离信息和长期气候特征,采用凝聚式层次聚类方法将区域划分为若干子区域。随后,建立由图神经网络和重新设计的双向长短期记忆网络组成的层次化时空预测框架,以刻画风电场及子区域之间多维度的相互关联。此外,引入修正模块及其相应的改进损失函数,以增强在特定时刻尤其是出现极值情况下的预测性能。最后,在真实区域风电功率预测场景中对所提方法进行了验证,案例研究结果证实了其相较于基准方法的优越性。

English Abstract

Abstract The total potential of wind power generation in the jurisdiction attracts more attention compared to an individual wind farm from the prospect of power system operators. Exploiting the spatio-temporal dependencies at multiple wind farm sites within the target region can significantly enhance the forecasting performance. However, multitudes of wind farms pose ignorable modelling challenges due to the intricate correlations arising from the continuity of different spatial-scale weather systems, and traditional loss function based on mean square error manifests natural weaknesses in the face of extreme events. To tackle these issues and further boost the forecasting accuracy, this paper constructs a hierarchical spatio-temporal graph neural network with a correction module and an improved loss function grounded in extreme value theory. Sub-regions are first divided based on agglomerative hierarchical clustering considering geographic distance information and long-term climate characteristics. Then, the hierarchical spatio-temporal forecasting framework consisting of graph neural network and redesigned bidirectional long-short term memory network is established to address the multifaceted interconnections across the wind farms and sub-regions. In addition, the correction module and corresponding revised loss function are encapsulated to enhance the forecasting performance at certain moments especially with extreme values. Finally, the proposed method is performed on the real-world regional wind power forecasting, and case studies confirm the superiority over the benchmark methods.
S

SunView 深度解读

该分层图神经网络区域风电预测技术对阳光电源储能系统(ST系列PCS、PowerTitan)具有重要应用价值。精准的区域风电预测可优化储能系统充放电策略,提升风储协同效率。其极值理论改进损失函数可增强极端工况预测能力,为iSolarCloud平台的预测性维护提供算法支撑。时空依赖建模方法可应用于多站点储能集群协调控制,结合GFM控制技术提升新能源消纳能力,助力构建源网荷储一体化智慧能源管理系统。