← 返回
风电变流技术 深度学习 ★ 5.0

STE-HOLNet:一种融合时空特征、动态概念漂移检测与自适应校正的风电功率预测新方法

STE-HOLNet: A new method for wind power prediction by integrating spatio-temporal features, dynamic concept drift detection and adaptive correction

作者 Xiongfeng Zhao · Hai Peng Liu · Huaiping Jin · Xueping Shen · Weihao Ren
期刊 Energy Conversion and Management
出版日期 2025年1月
卷/期 第 344 卷
技术分类 风电变流技术
技术标签 深度学习
相关度评分 ★★★★★ 5.0 / 5.0
关键词 STE-HOLNet enhances wind power prediction with spatio-temporal feature extraction.
语言:

中文摘要

摘要 风电具有高度的不确定性和非线性,其时间序列通常表现出多周期性特征和概念漂移现象,这对实现高精度预测构成了重大挑战。本文提出了一种基于时空特征增强并结合动态在线校正机制的混合深度学习预测模型——时空增强型混合在线学习网络(Spatio-temporal Enhanced Hybrid Online Learning Network, STE-HOLNet),该模型通过改进的时间编码机制与深层网络结构紧密集成,实现了实时且高精度的风电功率预测。首先,引入一种改进的Time2Vec模块(E-Time2Vec)以增强时间特征的表达能力;其次,设计了一种改进的TimesNetV2网络,将一维时间序列映射为二维张量,并嵌入Inception V2模块,用于在多个尺度上提取特征并识别数据分布的变化(即概念漂移)。内置的概念漂移检测机制能够及时捕捉风力发电数据统计特性中的突变,从而触发后续的自适应训练过程。随后,通过结合参数共享策略(Parameter Sharing Strategy, PS)、对冲反向传播在线学习算法(Hedge Backpropagation, HBP)以及一种新颖的Mamba网络架构,构建了PS-HBPMamba自适应训练模块。当检测到概念漂移时,该模块对模型进行局部梯度更新,动态调整参数,快速适应新的数据分布,显著提升了模型的稳定性及长期预测性能。最后,采用集成误差校正(Error Correction, EC)方法对预测结果进行修正,进一步缓解误差累积现象,提高预测精度。实验结果表明,所提出的模型在中国新疆地区内陆风电场和美国沿海风电场的实际测量数据上均取得了优异的预测性能。以当前最先进的基准模型(如PatchTST)为例,在内陆风电场场景中,本模型的RMSE、MAE和SMAPE分别降低了36.93%、41.26%和56.57%,相关系数R²提升了1.66%,显著优于现有的最先进方法。这些结果验证了概念漂移检测与自适应在线训练相结合的有效性,表明本研究在减少预测误差累积、增强模型对数据动态变化适应能力方面取得了重要的技术突破。

English Abstract

Abstract Wind power is highly uncertain and nonlinear, and its time series often have multi-periodic features and concept drift, which poses a significant challenge for accurate prediction. In this paper, we propose a hybrid deep learning prediction model based on spatio-temporal feature enhancement with dynamic online correction (Spatio-temporal Enhanced Hybrid Online Learning Network, STE-HOLNet), which is tightly integrated with improved temporal coding and deep networks to achieve real-time, high-precision wind power prediction in real-time with high accuracy. First, an improved Time2Vec (E-Time2Vec) module is introduced to enhance the temporal feature representation; second, an improved TimesNetV2 network is designed to map one-dimensional time series into two-dimensional tensors and embedded with the Inception V2 module to extract features and identify changes in data distribution (concept drift) at multiple scales. The built-in concept drift detection mechanism detects abrupt changes in the statistical properties of the WT data in time to trigger subsequent adaptive training. Subsequently, the PS-HBPMamba adaptive training module was constructed by combining the Parameter Sharing Strategy (PS) with the Hedge Backpropagation online learning algorithm (HBP) and a novel Mamba network architecture. The module performs a local gradient update to the model when concept drift is detected. It dynamically adjusts the parameters to adapt to the new data distribution quickly, significantly improving the model’s stability and long-term prediction performance. Finally, the integrated error correction (EC) method corrects the prediction results to reduce the error accumulation phenomenon further and improve prediction accuracy. The experimental results show that the proposed model achieves excellent prediction performance on measured data from both inland wind farms in Xinjiang, China, and coastal wind farms in the United States. Compared with the current state-of-the-art benchmark models (PatchTST and inland wind farms, for example), the proposed model’s RMSE, MAE and SMAPE are reduced by 36.93%, 41.26% and 56.57%, respectively. The correlation coefficient, R2, is improved by 1.66%, significantly better than the existing state-of-the-art methods. These results verify the effectiveness of the combination of concept drift detection and adaptive online training and indicate that this study has achieved an important technical breakthrough in reducing the accumulation of prediction errors and enhancing the model’s ability to adapt to dynamic changes in data.
S

SunView 深度解读

该风电功率预测技术对阳光电源储能系统具有重要应用价值。STE-HOLNet模型的概念漂移检测与自适应在线学习机制,可直接应用于ST系列PCS的功率预测模块,提升储能系统对风电波动的响应能力。其时空特征增强方法能优化iSolarCloud平台的预测性维护算法,降低RMSE达36.93%的性能可显著改善PowerTitan储能系统的充放电策略。该深度学习框架与阳光电源GFM控制技术结合,可增强新能源并网的稳定性,为风光储一体化解决方案提供更精准的能量管理依据。