← 返回
基于大涡模拟与卷积神经网络的海上风力机尾流及输出功率预测
Prediction of offshore wind turbine wake and output power using large eddy simulation and convolutional neural network
语言:
中文摘要
摘要 预测海上风力机的尾流特性及输出功率对于优化风电场布局并最大化风能产量至关重要。近年来,多种计算流体动力学方法被开发用于预测风力机尾流和输出功率,并相比传统解析模型表现出良好的性能。然而,在海上风电场设计中,计算流体动力学通常涉及较高的计算成本,因为需要考虑不同机组间距下多种复杂的海上风况。为在保证预测精度的同时提升计算效率,本文结合大涡模拟与卷积神经网络开展研究。大涡模拟有效融合了致动线方法与离散合成随机流生成技术,用于生成单台风力机在不同来流风速和湍流强度条件下的尾流速度、尾流湍流强度以及输出功率。基于所生成的数据集,卷积神经网络能够高效捕捉单台风力机输入与输出之间的非线性关系。所预测的上游风力机尾流数据可作为输入,用于估算下游风力机的输出功率密度及尾流特征。该过程可迭代应用于风电场中后续每一台风力机,从而支持最优机组间距的识别与优化。本文以一台实用规模的5 MW风力机为例验证所提方法的有效性。结果表明,对单台风力机及多台风力机系统的输出功率预测误差均低于3%。
English Abstract
Abstract Predicting offshore wind turbine wake and output power is crucial for optimizing wind farm layouts and maximizing wind energy production. In recent years, several Computational Fluid Dynamics methods have been developed to predict wind turbine wake and output power and demonstrated good performance compared with traditional analytical models. However, Computational Fluid Dynamics often involve high computational costs in offshore wind farm design because a wide range of offshore wind conditions need to be considered for turbines with different inter-turbine spacings. To ensure both the fidelity and efficiency for predicting offshore wind turbine wake and output power, Large Eddy Simulation and Convolutional Neural Network are utilized in this study. The Large Eddy Simulation effectively integrates the Actuator Line Method and Discretizing and Synthesizing Random Flow Generation to generate wake velocity, wake turbulence intensity, and output power for a stand-alone turbine under different incoming wind speeds and turbulence intensities . Using the generated dataset, Convolutional Neural Network effectively captures the relationship between inputs and outputs for the stand-alone turbine. The predicted wake data for the turbine can then act as input to estimate the output power density and wake characteristics of a downstream turbine. This process can be iteratively applied to predict the wake and output power of each subsequent turbine in a wind farm, supporting the identification of optimal inter-turbine spacing. The proposed method is illustrated using a utility-scale 5 MW wind turbine. The results show that the errors of predicted output power for a stand-alone wind turbine and multiple wind turbines are blew 3 %.
S
SunView 深度解读
该LES-CNN混合预测技术对阳光电源海上风电场储能配置具有重要价值。通过精准预测尾流效应和功率输出(误差<3%),可优化ST系列储能变流器的容量配置和PowerTitan系统的调度策略。尾流湍流强度数据可指导GFM/VSG控制算法应对风电波动,提升电网支撑能力。深度学习方法可集成至iSolarCloud平台,实现风储协同的预测性运维,降低海上风电场LCOE,为阳光电源拓展海上新能源+储能一体化解决方案提供技术支撑。