← 返回
风电变流技术 储能系统 深度学习 ★ 5.0

基于多图神经网络辅助双域Transformer的风力发电时空预测

Spatiotemporal forecasting using multi-graph neural network assisted dual domain transformer for wind power

作者 Guolian Hou · Qingwei Li · Congzhi Huang
期刊 Energy Conversion and Management
出版日期 2025年1月
卷/期 第 325 卷
技术分类 风电变流技术
技术标签 储能系统 深度学习
相关度评分 ★★★★★ 5.0 / 5.0
关键词 A framework using multi-graph network assisted Transformer architecture is proposed.
语言:

中文摘要

摘要 准确预测风力发电量对于风电场的运行与维护决策至关重要。随着风电机组规模和容量的不断增加,综合考虑时间与空间特征已成为提高预测精度的关键。本文提出一种新颖的多步风力发电时空预测方法,该方法采用多图神经网络辅助的双域Transformer模型。具体而言,为充分表征风电机组之间的异质依赖关系,通过注意力机制构建多种关系图并将其融合为统一图结构。随后,设计了时空融合模块(STFM),结合图卷积网络与一维卷积神经网络,以同时捕捉时间与空间特征。此外,提出了时频双域Transformer(DDformer),以充分利用STFM提取的信息。DDformer中的序列学习从三个角度进行:多头自注意力机制、本征模态函数注意力机制以及残差连接。最后,构建了综合评估指标,用于在单台风电机组和整个风电场两个层面全面评估风力发电预测的整体性能。在真实世界数据集上进行了广泛的多步预测仿真实验,预测时间范围涵盖未来10分钟至6小时。案例研究表明,所提出的方法持续优于先进的基准模型和消融实验模型,平均综合归一化平均绝对误差和归一化均方根误差分别为5.8469%和8.9461%,相对改进幅度达38.35%和33.72%。总体而言,该方法在多步预测方面的有效性为风力发电预测提供了一个新的框架,并具有重要的借鉴意义。

English Abstract

Abstract Accurate prediction of wind power generation is crucial for operational and maintenance decision in wind farms. With the increasing scale and capacity of turbines, incorporating both temporal and spatial characteristics has become essential to improve prediction accuracy. In this paper, a novel spatiotemporal multi-step wind power forecasting method using multi-graph neural network assisted dual domain Transformer is proposed. Specifically, to adequately represent the heterogeneous dependencies among wind turbines, multi-relational graphs are constructed and integrated into a unified graph via attention mechanisms. Subsequently, the spatiotemporal fusion module (STFM) is developed using graph convolutional network and one-dimensional convolutional neural network to capture temporal and spatial features simultaneously. Moreover, the time–frequency dual domain Transformer (DDformer) is devised to fully utilize the information extracted by the STFM. Sequence learning in DDformer is performed through three perspectives, including multi-head self-attention mechanism, intrinsic mode function attention mechanism, and residual connection. Finally, the comprehensive evaluation metrics are formulated to assess the overall performance of wind power forecasting at both individual turbine and entire farm levels. Extensive simulations on a real-world dataset are conducted for multi-step forecasting, covering time horizons ranging from 10 min to 6 h ahead. In the case study, the proposed method consistently outperformed advanced benchmarks and ablation models, achieving average comprehensive normalized mean absolute error and normalized root mean square error of 5.8469% and 8.9461%, respectively, with improvements of 38.35% and 33.72%. Overall, the effectiveness of multi-step forecasting makes this study provide valuable insights into a new framework for wind power forecasting.
S

SunView 深度解读

该时空多图神经网络风电预测技术对阳光电源储能系统具有重要应用价值。可集成至iSolarCloud平台,为风储耦合场景下的ST系列PCS提供精准功率预测支撑,优化储能充放电策略。多步预测能力(10分钟至6小时)与PowerTitan储能系统的能量管理周期高度契合,可提升风储协同调度精度。其时频双域Transformer架构可启发GFM/VSG控制算法优化,增强新能源并网稳定性。多关系图建模思路亦可拓展至光储电站集群协同控制,提升预测性维护效能。