← 返回
风电变流技术 储能系统 工商业光伏 深度学习 ★ 5.0

基于增量贝叶斯随机配置网络的漂移环境概率风力预测

Probabilistic Wind Power Prediction Using Incremental Bayesian Stochastic Configuration Network Under Concept Drift Environment

作者 Jizhong Zhu · Le Zhang · Di Zhang · Yixi Chen
期刊 IEEE Transactions on Industry Applications
出版日期 2024年9月
技术分类 风电变流技术
技术标签 储能系统 工商业光伏 深度学习
相关度评分 ★★★★★ 5.0 / 5.0
关键词 概率风电预测 概念漂移 增量贝叶斯随机配置网络 漂移检测 预测精度
语言:

中文摘要

传统数据驱动的概率风力预测方法通常假设外部环境静态不变,而实际工业数据常受概念漂移影响,导致模型性能下降。为此,本文提出一种增量贝叶斯随机配置网络方法。该方法利用无需迭代的轻量级随机权值神经网络SCN建模变量与目标间的潜在关系,并结合贝叶斯推断更新输出层参数,构建概率预测模型BSCN。通过最大均值差异与连续排序概率评分检测虚拟与真实漂移,以真实漂移触发BSCN的增量学习,并设计特定更新策略实现模型自适应。实验表明,该方法在动态漂移环境中能持续学习新模式且不遗忘旧知识,显著提升预测精度。

English Abstract

Standard data-driven probabilistic wind power prediction solutions typically assume a static exogenous environment, where historical data contains all information desired to predict the future. Unfortunately, the practical industrial data distribution is time-varying and unforeseen, known as concept drift (CD), violating the assumption. To address this challenge, an incremental Bayesian stochastic configuration network is proposed to enhance prediction accuracy under CD environments. Concretely, Stochastic Configuration Network (SCN), a lightweight and iteration-free random weight neural network, is explored to model latent relationships between variables and targets. Subsequently, Bayesian inference updates SCN's output layer parameters, approximating the parameter posterior distribution and generating the probabilistic prediction model BSCN. To manage CD, Maximum Mean Discrepancy and Continuous Ranked Probability Score are employed to detect virtual and real drifts. The real drift serves as a trigger for the incremental learning of the BSCN, with a specifically designed incremental update strategy to facilitate this process. Extensive experiments demonstrate that the proposed method can continuously learn new modes without forgetting and significantly improve probabilistic wind power prediction accuracy in dynamic CD environments.
S

SunView 深度解读

该增量贝叶斯预测方法对阳光电源风电和储能产品线具有重要应用价值。首先可用于ST系列储能变流器的功率预测与调度优化,提升储能系统对风电波动的平抑效果。其次可集成到iSolarCloud平台,通过实时漂移检测和自适应学习提高风电场发电预测准确度,优化PowerTitan储能系统的调度策略。该方法的轻量级特性适合边缘计算部署,可实现变流器本地的智能预测,减少云端依赖。此外,其概率预测框架有助于提升GFM/VSG控制的鲁棒性,为新一代风储一体化解决方案提供技术支撑。