找到 2 条结果

排序:
风电变流技术 储能系统 工商业光伏 深度学习 ★ 5.0

基于增量贝叶斯随机配置网络的漂移环境概率风力预测

Probabilistic Wind Power Prediction Using Incremental Bayesian Stochastic Configuration Network Under Concept Drift Environment

Jizhong Zhu · Le Zhang · Di Zhang · Yixi Chen · IEEE Transactions on Industry Applications · 2024年9月

传统数据驱动的概率风力预测方法通常假设外部环境静态不变,而实际工业数据常受概念漂移影响,导致模型性能下降。为此,本文提出一种增量贝叶斯随机配置网络方法。该方法利用无需迭代的轻量级随机权值神经网络SCN建模变量与目标间的潜在关系,并结合贝叶斯推断更新输出层参数,构建概率预测模型BSCN。通过最大均值差异与连续排序概率评分检测虚拟与真实漂移,以真实漂移触发BSCN的增量学习,并设计特定更新策略实现模型自适应。实验表明,该方法在动态漂移环境中能持续学习新模式且不遗忘旧知识,显著提升预测精度。

解读: 该增量贝叶斯预测方法对阳光电源风电和储能产品线具有重要应用价值。首先可用于ST系列储能变流器的功率预测与调度优化,提升储能系统对风电波动的平抑效果。其次可集成到iSolarCloud平台,通过实时漂移检测和自适应学习提高风电场发电预测准确度,优化PowerTitan储能系统的调度策略。该方法的轻量级...

风电变流技术 储能系统 调峰调频 ★ 5.0

基于“动态匹配与在线建模”策略的超短期风功率预测

Ultra-Short-Term Wind Power Forecasting Based on the Strategy of “Dynamic Matching and Online Modeling”

Yuhao Li · Han Wang · Jie Yan · Chang Ge 等6人 · IEEE Transactions on Sustainable Energy · 2024年8月

超短期风功率预测对电力系统实时调度、频率调节和日内市场交易具有重要意义。由于天气系统复杂性、机组老化及风电场控制策略等因素,风功率序列的时间依赖关系时变(即概念漂移),导致常用离线建模方法预测精度偏低。在线建模可利用流式数据最新信息捕捉动态变化规律,但现有方法难以满足电网对预测时效性的要求。为此,本文提出“动态匹配与在线建模”策略,通过幅值与波动特征相似性动态筛选训练样本,提升样本代表性并缩短训练时间;同时在匹配过程中引入数值天气预报风速信息以提高预测精度。基于中国三个风电场运行数据的实验结果表...

解读: 该风功率预测技术对阳光电源储能产品线具有重要应用价值。可直接应用于ST系列储能变流器和PowerTitan大型储能系统的调度控制,通过准确预测风电出力波动,优化储能系统的充放电策略,提升调峰调频性能。'动态匹配'方法可集成到iSolarCloud平台,为储能系统提供更精准的调度指令。该技术的在线建模...