← 返回
风电变流技术 储能系统 调峰调频 ★ 5.0

基于“动态匹配与在线建模”策略的超短期风功率预测

Ultra-Short-Term Wind Power Forecasting Based on the Strategy of “Dynamic Matching and Online Modeling”

作者 Yuhao Li · Han Wang · Jie Yan · Chang Ge · Shuang Han · Yongqian Liu
期刊 IEEE Transactions on Sustainable Energy
出版日期 2024年8月
技术分类 风电变流技术
技术标签 储能系统 调峰调频
相关度评分 ★★★★★ 5.0 / 5.0
关键词 超短期风电预测 概念漂移 在线建模 动态匹配 预测精度
语言:

中文摘要

超短期风功率预测对电力系统实时调度、频率调节和日内市场交易具有重要意义。由于天气系统复杂性、机组老化及风电场控制策略等因素,风功率序列的时间依赖关系时变(即概念漂移),导致常用离线建模方法预测精度偏低。在线建模可利用流式数据最新信息捕捉动态变化规律,但现有方法难以满足电网对预测时效性的要求。为此,本文提出“动态匹配与在线建模”策略,通过幅值与波动特征相似性动态筛选训练样本,提升样本代表性并缩短训练时间;同时在匹配过程中引入数值天气预报风速信息以提高预测精度。基于中国三个风电场运行数据的实验结果表明,所提方法可将4小时提前预测精度提升1.18%–4.32%,且具有良好的鲁棒性。

English Abstract

Ultra-short-term wind power forecasting plays a vital role in real-time scheduling, frequency regulation, and intraday market transactions. Due to the complexity of weather systems, unit aging, wind farm control strategies, etc., the temporal dependency relationship in wind power series changes from time to time (known as concept drift), which leads to the low forecasting accuracy of the commonly used offline modeling methods. Online modeling can effectively deal with concept drift by utilizing the latest information in the flow data and capturing the latest concepts during the modeling process. However, the existing online modeling methods cannot meet the timeliness requirements of the power grid for ultra-short-term wind power forecasting. Therefore, a strategy of “dynamic matching and online modeling” for ultra-short-term wind power forecasting is proposed in this paper. Training samples are dynamically selected according to the characteristic similarity of amplitude and fluctuation, aiming to improve the representativeness of samples and reduce the training time simultaneously. In addition to historical power, Numerical Weather Prediction wind speed is also introduced in the process of “dynamic matching” to improve the forecasting accuracy. Operation data from three wind farms in China is used to validate the effectiveness and robustness of the proposed method. The results show that the forecasting accuracy can be improved by 1.18%–4.32% for 4 hours in advance.
S

SunView 深度解读

该风功率预测技术对阳光电源储能产品线具有重要应用价值。可直接应用于ST系列储能变流器和PowerTitan大型储能系统的调度控制,通过准确预测风电出力波动,优化储能系统的充放电策略,提升调峰调频性能。'动态匹配'方法可集成到iSolarCloud平台,为储能系统提供更精准的调度指令。该技术的在线建模思路也可借鉴应用于SG系列逆变器的MPPT算法优化,通过实时捕捉发电特性变化提升发电效率。对构建新能源-储能协同控制体系、提升系统稳定性具有重要参考价值。