← 返回
风电变流技术 储能系统 调峰调频 ★ 5.0

基于状态空间映射的数据驱动型风电场频率特性动态评估

Data-driven Dynamic Assessment of Wind Farm Frequency Characteristics Based on State Space Mapping

语言:

中文摘要

随着大规模风电机组通过电力电子接口接入电网,电力系统面临日益严峻的频率稳定问题。由于风电机组数量众多且动态特性复杂,运行人员难以协调单个机组直接提供频率支撑,亟需评估风电场的一次调频能力。本文提出一种基于数据驱动与状态空间映射的线性化模型,结合Koopman算子理论,将风电场非线性动态转化为线性升维代数模型,利用历史数据实时评估其最大一次调频能力。仿真结果表明,该方法求解快速、无需精确模型参数,且对训练数据需求较低。

English Abstract

With the integration of large-scale wind turbines(WTs)into grids via electronic interfaces,power systems are suffering from increasingly serious frequency stability risks.Due to the large number of WTs and their complex dynamic char-acteristics,operators encounter challenges in coordinating single WTs to provide frequency support directly,and it is necessary to assess the primacy frequency regulation(PFR)capability of wind farms.To cope with the problems of solving complexity and incomplete parameters,a data-driven state space mapping-based linear model for wind farms is developed in this paper to assess the maximum PFR capability.With Koopman operator theory(KOT),the proposed method transforms wind farm PFR nonlinear dynamics into a linear lift-dimension algebraic model,which can assess the maximum PFR capability of wind farms based on historical data in real-time.The simulation results demonstrate that the proposed method has the advantages of fast solving,independence on model parameters,and lower training data requirements.
S

SunView 深度解读

该研究对阳光电源储能与风电产品的调频控制具有重要参考价值。基于状态空间映射的数据驱动方法可应用于ST系列储能变流器和PowerTitan系统的一次调频能力评估,优化GFM/VSG控制策略。特别是在大规模风储联合项目中,该方法能实时评估系统调频潜力,提升iSolarCloud平台的智能调度功能。通过Koopman算子简化复杂非线性特性的思路,可用于改进储能变流器的自适应控制算法,提高系统响应速度。这对完善阳光电源'源网荷储'一体化解决方案、增强产品竞争力具有积极意义。