← 返回
风电变流技术 储能系统 调峰调频 ★ 5.0

风力发电场频率支撑可行域的互相关性建模:一种非迭代的全系统动态特性调度方法

Interdependence modeling of wind farm frequency support feasible region: A non-iterative system-wide dynamic characteristics scheduling

作者 Jiaqing Zhai · Li Guo · Zhongguan Wang · Jiebei Zhu · Xialin Li · Chengshan Wang
期刊 Applied Energy
出版日期 2025年1月
卷/期 第 401 卷
技术分类 风电变流技术
技术标签 储能系统 调峰调频
相关度评分 ★★★★★ 5.0 / 5.0
关键词 System-wide scheduling with interdependent dynamics eliminates multiple iterations.
语言:

中文摘要

摘要 高比例可再生能源电力系统中,风力发电场(WFs)提供频率调节支撑(FRS)服务对系统频率稳定至关重要。由于风速具有时变特性,实时调度WFs的FRS特性对于保障系统频率安全及动态潮流(PF)安全十分必要。然而,风力发电机组(WTs)数量庞大,且各WFs之间的频率支撑能力(FSC)存在相互关联性,导致FRS动态特性复杂化,使得WTs的FRS安全性量化变得困难,尤其是在缺乏精确WT参数的情况下。因此,本文提出一种数据驱动的方法,用于建模不同WFs之间FSC的互相关性。通过空间变换,将原始复杂的非线性FRS动态特性转化为维度扩展的线性模型,从而便于构建FSC的解析表达式。在此基础上,建立了一种考虑FSC互相关特性的优化调度模型,并采用结合克里金代理与分段精英学习策略的混合算法进行求解。仿真结果表明,所提方法能够实现WFs FRS特性的快速在线调度,在确保系统频率、WTs及潮流安全的前提下最小化FRS成本,同时在无需依赖物理参数的情况下,计算效率提升了98.54%。

English Abstract

Abstract The provision of frequency regulation support (FRS) services by wind farms (WFs) is of crucial importance for frequency stability of power systems with high-penetration renewable energy. With time-varying wind speed, real-time scheduling for the FRS characteristics of WFs is essential for ensuring the security of system frequency and dynamic power flow (PF). However, the extensive number of wind turbines (WTs) and interdependence of frequency support capabilities (FSCs) among WFs contribute to the complexity of FRS dynamics, rendering the quantification of FRS security of WTs challenging, especially in the absence of precise WT parameters. Therefore, this paper proposes a data-driven method for modeling interdependence of FSCs across WFs. Utilizing space transformation, the original complex nonlinear FRS dynamics of WTs are transformed into a dimension-augmented linear model, facilitating the construction of an analytical expression for FSCs. On this basis, an optimal scheduling model considering the interdependent characteristics of FSCs is developed, which can be solved by employing a hybrid algorithm combining Kriging-assisted surrogate with piecewise elite learning strategy. The simulation results demonstrate that the proposed method enables fast online scheduling of FRS characteristics for WFs, minimizing FRS costs while maintaining system frequency, WTs, and PF security, and enhances computational efficiency by 98.54 % without reliance on physical parameters.
S

SunView 深度解读

该风电场频率支持调度技术对阳光电源储能系统(ST系列PCS、PowerTitan)具有重要借鉴价值。论文提出的数据驱动建模方法可应用于储能电站的一次调频优化,通过空间变换实现非线性动态特性的快速求解,与阳光VSG虚拟同步机技术协同,提升新能源场站频率响应能力。所提分段精英学习算法可集成至iSolarCloud平台,实现储能参与调频的实时优化调度,在保障电网频率安全前提下降低调频成本98.54%,为构网型(GFM)储能系统的智能调度提供创新思路,增强高比例新能源电网的频率稳定性。