← 返回

漂浮式海上风力机的高阶多物理场建模及其气动设计与载荷管理

Advanced multi-physics modeling of floating offshore wind turbines for aerodynamic design and load management

作者 Haoda Huang · Qingsong Liub · Gregorio Iglesiasc · Chun Lia
期刊 Energy Conversion and Management
出版日期 2025年1月
卷/期 第 346 卷
技术分类 风电变流技术
技术标签 储能系统 SiC器件 工商业光伏 多物理场耦合
相关度评分 ★★★★★ 5.0 / 5.0
关键词 A high-fidelity CFD-FEM model is developed for floating offshore wind turbine analysis.
语言:

中文摘要

摘要 漂浮式海上风力机(FOWTs)在提升海上风电竞争力方面具有显著优势。然而,其运行过程涉及复杂的动力学行为,表现为多种载荷来源、显著的时间变异性以及高度非线性特征。深入理解主导FOWT行为的多物理场耦合机制及子系统间的相互作用,对于提高运行安全性、增加发电功率并推动商业化部署至关重要。为应对上述挑战,本研究通过融合计算流体动力学(CFD)与有限元方法(FEM),构建了一个高保真度、完全耦合的气动-弹性-水动-系泊多物理场分析框架。以安装在半潜式平台上的NREL 5 MW水平轴风力机(HAWT)为研究对象,考察其在风浪联合作用下的非线性动态响应。结果表明,平台的六自由度运动持续改变风机转子的来流条件,导致平均功率系数较固定式基础对应情形下降6.84%,并引发明显的功率波动增强。此外,FOWT尾流区域表现出更高的湍流强度和更快的耗散速率。双向流固耦合分析显示,叶片在中段至叶尖区域发生明显的挥舞方向弹性变形,改变了攻角,并在后缘持续诱发涡旋脱落。结构应力分布结果显示,塔筒底部、主柱底部以及支撑构件与平台连接处存在显著的应力集中现象。尽管叶片整体应力水平相对较低,但在叶根过渡区及剪切腹板连接部位仍观测到较高的局部应力。此外,系泊缆与海床之间的接触开启分析表明,由于平台纵荡运动的影响,迎风侧系泊缆会周期性地脱离并重新接触海床,导致接触压力分布变化剧烈,并引起系泊张力的大幅波动。

English Abstract

Abstract Floating offshore wind turbines (FOWTs) offer distinct advantages for improving the competitiveness of offshore wind energy. However, their operation involves complex dynamics characterized by multiple sources of loading, considerable temporal variability, and high nonlinearity. Understanding the multi-physics coupling mechanisms and subsystem interactions governing the behavior of FOWTs is essential for enhancing operational safety, increasing power output, and promoting commercial deployment. To address these challenges, this study develops a high-fidelity, fully coupled aero-elastic-hydro-mooring framework by integrating computational fluid dynamics (CFD) and the finite element method (FEM). The NREL 5 MW horizontal-axis wind turbine (HAWT) mounted on a semi-submersible platform is used as an exemplar to investigate its nonlinear dynamic responses under combined wind and wave loading. The results show that the platform’s six-degree-of-freedom motion leads to continuous changes in the rotor inflow conditions, resulting in a 6.84 % reduction in the average power coefficient compared with its bottom-fixed counterpart, and producing a noticeable increase in power fluctuations. Nevertheless, the wake behind the FOWT exhibits higher turbulence intensity and a faster rate of dissipation. The two-way fluid–structure interaction analysis indicates that the blades undergo flapwise elastic deformation, particularly from the mid-span to the tip, which alters the angle of attack and induces continuous vortex shedding along the trailing edges. The structural stress distribution highlights significant stress concentration at the tower base, the bottom of the main column, and the connections between the braces and the platform. Although blade stress remains relatively low overall, higher stresses are observed near the blade root transition and at the shear web connections. In addition, the contact opening analysis between the mooring lines and the seabed shows that the windward mooring line periodically separates from and recontacts the seabed due to the surge motion of the platform, resulting in varying contact pressure distributions and large fluctuations in the mooring tension.
S

SunView 深度解读

该多物理场耦合建模技术对阳光电源海上风电变流器产品具有重要价值。研究揭示的浮式风机功率波动增大(6.84%效率损失)和复杂载荷特性,为我司SG系列大功率风电变流器的控制策略优化提供依据。可借鉴其流固耦合分析方法,改进变流器在动态工况下的MPPT算法和GFM并网控制,提升功率平滑能力。同时,该研究的应力集中分析对变流器塔筒安装方案和散热结构设计有参考意义,可结合我司SiC器件技术提升海上恶劣环境适应性,并通过iSolarCloud平台实现预测性维护。