← 返回
考虑尾流时空耦合的风电场功率预测
Wind Farm Power Prediction with Wake Spatiotemporal Coupling
| 作者 | Yueteng Xie · Fangming Deng · Wenxiang Luo · Bo Gao · Baoquan Wei · Jianjun Zeng |
| 期刊 | IEEE Transactions on Sustainable Energy |
| 出版日期 | 2025年9月 |
| 技术分类 | 风电变流技术 |
| 技术标签 | 储能系统 SiC器件 多物理场耦合 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | 风力机群功率预测 尾流效应 动态图网络 物理约束机制 时空特征 |
语言:
中文摘要
在动态气象条件下,风电机组群的功率预测面临尾流效应时空耦合的挑战。本文提出一种考虑尾流效应时空动态耦合的风电场功率预测方法。通过融合风机空间分布与实时气象数据构建动态图网络,实现尾流传播路径的自适应表征。设计双驱协同框架,在时空维度嵌入物理规律约束,缓解数据驱动模型在极端工况下的物理失真问题。构建时空解耦特征增强架构,捕捉风机间空间关联及多时间尺度气象特征。实验结果表明,该方法显著提升预测精度。
English Abstract
Power prediction for wind turbine clusters under dynamic meteorological conditions faces the challenge of wake coupling effects in time and space. Therefore, this paper proposes a wind farm power prediction method that considers the spatio-temporal dynamic coupling of wake effects.By integrating wind turbine spatial distribution and real-time meteorological data to construct a dynamic graph network, the method achieves adaptive representation of wake propagation paths. A dual-drive collaborative framework is designed, embedding physical law constraints in both the spatial and temporal dimensions to address the physical distortion issues of data-driven models under extreme operating conditions. Simultaneously, a spatio-temporal decoupled feature enhancement architecture is constructed to capture the spatial correlations of wind turbines and meteorological features across multiple time scales. Experimental results demonstrate that the dynamic graph network reduces the RMSE in wind direction sudden change scenarios by 53.85%; the physical constraint mechanism compresses the momentum residual in 48-step predictions to 0.60×10-10; spatial and multi-scale temporal features contribute 12.84% and 15.52% to the RMSE reduction, respectively; and multi-module collaboration optimizes the average MAPE of actual wind farm predictions to 9.37%-10.91%, representing an improvement of over 27.98% compared to the best baseline.
S
SunView 深度解读
该风电场功率预测技术对阳光电源储能和智能运维产品线具有重要应用价值。其时空耦合建模方法可优化ST系列储能变流器的调度策略,提升PowerTitan大型储能系统在风光储多能互补场景下的运行效率。尾流效应动态预测技术可集成到iSolarCloud平台,增强新能源电站群的功率预测精度,为储能调度和电网调峰提供更准确的决策支持。该研究的双驱协同框架和物理约束思路,也可借鉴应用于阳光电源GFM/GFL控制算法的优化设计,提升储能变流器在极端工况下的稳定性。