← 返回
风电变流技术 储能系统 深度学习 ★ 5.0

通过特征空间匹配分析解释基于时空相关性的LASSO回归模型用于风电功率预测

Interpreting LASSO regression model by feature space matching analysis for spatio-temporal correlation based wind power forecasting

作者 Yongning Zhao · Yuan Zhao · Haohan Liao · Shiji Pan · Yingying Zheng
期刊 Applied Energy
出版日期 2025年1月
卷/期 第 380 卷
技术分类 风电变流技术
技术标签 储能系统 深度学习
相关度评分 ★★★★★ 5.0 / 5.0
关键词 An interpreting framework for self-interpreting LASSO model for WPF is presented.
语言:

中文摘要

摘要 解释高性能的风电功率预测(WPF)模型对于推动更可信和更精确的预测方法至关重要。当前的研究主要集中在解释黑箱深度学习模型,而忽视了能够直接指示特征重要性的自解释模型,尽管这些模型无法阐明其背后的成因机制。基于最小绝对收缩与选择算子(LASSO)的自解释回归模型在WPF中表现出色。因此,探索其内在决策逻辑及其系数的实际意义,以提取有益的领域知识,具有重要意义。本文提出了一种解释框架,旨在阐明考虑时空相关性的LASSO回归模型在WPF中的决策逻辑。该框架包含四个主要组成部分:首先,建立一个时空相关性量化系统,用于为目标风电场进行特征选择,所采用的指标能够反映风电场发电功率之间的空间相关性、时间波动性、地统计特性以及因果关系;其次,通过比较该量化系统所选择并排序的特征与LASSO模型所选择的特征,开展特征匹配分析;第三,基于初步特征匹配分析所识别出的时空模式和关键特征,通过修改特征空间进行特征扰动分析,以评估时空特征的变化对预测精度的影响;最后,通过设置不同的LASSO参数进行敏感性分析,验证所提取领域知识的一致性。所提出的框架被应用于两个数据集,获得了丰富的定性和定量结果。研究有效识别了影响WPF精度的关键因素,例如特征共线性、参考风电场的数量及其空间分布情况,以及这些因素如何影响预测精度。该框架及其发现具有有效性、一致性和在不同数据集上的可推广性。

English Abstract

Abstract Interpreting well-performing wind power forecasting (WPF) models is essential to advance more trustworthy and accurate forecasting methodologies. Current research primarily focuses on interpreting black-box deep learning models, overlooking self-interpreting models that can directly indicate feature importance but fail to explain the underlying reasons. Self-interpreting regression models based on the least absolute shrinkage and selection operator (LASSO) excel in WPF. Therefore, it is crucial to explore their underlying decision logic and the practical implications of their coefficients to extract beneficial domain knowledge. An interpreting framework is proposed to elucidate the decision logic of the LASSO regression in WPF considering spatio-temporal correlations. The framework includes four main components. Firstly, a spatio-temporal correlation quantification system is established for feature selection for target wind farms , utilizing metrics that reflect spatial correlations , temporal fluctuations, geostatistics, and causalities of wind farms’ power output . Secondly, feature matching analysis is performed by comparing the features selected and ranked by the quantification system with those selected by the LASSO model. Thirdly, based on the spatio-temporal patterns and key features identified from the preliminary feature matching analysis, a feature perturbation analysis is conducted by modifying the feature space to assess how changes in spatio-temporal features impact forecasting accuracy. Finally, a sensitivity analysis is conducted by setting different LASSO parameters to verify the consistency of the extracted domain knowledge. The proposed framework is applied to two datasets, yielding substantial qualitative and quantitative results. Critical factors affecting WPF accuracy, such as feature collinearity, the number and spatial dispersion of reference wind farms , and how these factors influence forecasting accuracy are effectively identified. The framework and findings are effective, consistent and demonstrates generalizability across different datasets.
S

SunView 深度解读

该LASSO回归模型解释框架对阳光电源储能系统(ST系列PCS、PowerTitan)和iSolarCloud平台具有重要应用价值。通过时空相关性量化和特征匹配分析,可优化风储协同预测精度,提升储能系统功率调度策略。特征扰动分析方法可应用于多场站协同控制,识别关键影响因素如特征共线性、参考场站空间分布等,为GFM/GFL控制策略提供决策依据。该自解释模型框架可集成至iSolarCloud智慧运维平台,实现可信赖的预测性维护,降低深度学习黑箱模型风险,提升新能源场站调度可靠性与经济性。