← 返回
基于物理信息生成式深度学习的风力机分层动态尾流建模
Hierarchical dynamic wake modeling of wind turbine based on physics-informed generative deep learning
| 作者 | Qiulei Wang · Zilong Ti · Shanghui Yang · Kun Yang · Jiaji Wang · Xiaowei Deng |
| 期刊 | Applied Energy |
| 出版日期 | 2025年1月 |
| 卷/期 | 第 378 卷 |
| 技术分类 | 风电变流技术 |
| 技术标签 | 储能系统 SiC器件 热仿真 深度学习 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | A novel dynamic wake model using hierarchical generative [deep learning](https://www.sciencedirect.com/topics/chemical-engineering/deep-learning "Learn more about deep learning from ScienceDirect's AI-generated Topic Pages") for wake prediction. |
语言:
中文摘要
摘要 随着电力需求的不断增长,风电场的规模远超以往。功率与载荷预测是风电场布局优化中最关键的两个课题。传统的尾流建模方法,如解析模型和计算流体动力学(CFD)模拟,在准确性和效率方面均难以有效应对如此大规模的问题。本研究提出了一种新颖的基于生成式深度学习的风力机分层动态尾流建模方法——PHOENIX(PHysics-infOrmed gEnerative deep learniNg for hIerarchical dynamic wake modeling eXploration),用于捕捉风力机集群中非定常尾流场的时空特征。该研究采用动态尾流蜿蜒(DWM)模型生成相应的数据集,以训练、测试和验证基于深度学习的尾流预测框架。本研究有望显著加快预测过程并提高预测精度,且可进一步应用于风力机设计及风电场布局优化。
English Abstract
Abstract With the increasing demand for electric power, the size of wind farms is becoming much larger than ever before. Power and load prediction are two of the most essential topics in wind farm layout optimization. Traditional wake modeling methods, such as analytic models and CFD simulations , struggle to handle such large-scale problems accurately and efficiently. In this study, a novel hierarchical dynamic wake modeling approach for wind turbines using generative deep learning , PHOENIX (PHysics-infOrmed gEnerative deep learniNg for hIerarchical dynamic wake modeling eXploration), is proposed to capture the spatial–temporal features of the unsteady wake field in wind turbine clusters. The dynamic wake meandering (DWM) model is employed to generate the corresponding datasets for training, testing, and validating the deep learning-based wake prediction framework. This research is expected to accelerate the prediction process and improve accuracy, and it can be further applied to wind turbine design and wind farm layout optimization.
S
SunView 深度解读
该深度学习风电尾流建模技术对阳光电源风电变流器及储能系统具有重要价值。通过精准预测风机功率输出的时空特性,可优化ST系列储能PCS的充放电策略,提升风储协同效率。该物理信息神经网络方法可借鉴应用于iSolarCloud平台的预测性维护算法,结合GFM控制技术实现风电场群级功率平滑输出。动态尾流模型的快速预测能力为大规模新能源场站布局优化及阳光电源一体化解决方案提供智能决策支持,助力降低LCOE并提升电网友好性。