← 返回
符合概率分布的物理约束风力发电预测方法:面向抗噪深度学习
Physics-constrained wind power forecasting aligned with probability distributions for noise-resilient deep learning
| 作者 | Jiaxin Gao · Yuanqi Cheng · Dongxiao Zhang · Yuntian Chen |
| 期刊 | Applied Energy |
| 出版日期 | 2025年1月 |
| 卷/期 | 第 383 卷 |
| 技术分类 | 风电变流技术 |
| 技术标签 | SiC器件 深度学习 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | Proposed TgDPF combining wind power curve and LSTM for accurate robust wind power forecasting in high-noise conditions. |
语言:
中文摘要
摘要 风电作为关键的可再生能源之一,在实现碳中和目标中发挥着重要作用。然而,由于风速预测数据具有高噪声特性,风力发电功率的准确预测面临挑战,这会降低预测的精度与鲁棒性。为解决这一问题,本文提出一种理论引导(即物理约束)的深度学习风力发电预测方法(TgDPF)。TgDPF将表征风电功率概率分布的风电功率曲线领域知识,与长短期记忆网络(LSTM)深度学习模型相结合。该融合机制确保模型输出与风电功率的概率分布保持一致,遵循物理约束条件,从而增强对噪声的抵抗能力。因此,TgDPF是一种典型的物理约束建模方法。尽管风电功率的概率分布在提升预测准确性方面至关重要,但有效利用该分布仍面临重大挑战,包括在嵌入分布后维持模型的可微性,以及如何度量分布之间的相似性。为应对这些挑战,TgDPF采用核密度估计(KDE)方法计算风电功率曲线,以保证模型的可微性。通过Jensen-Shannon(JS)散度量化LSTM模型生成的风电功率曲线与实际风电功率曲线之间的差异,并将该差异引入LSTM的训练过程中。相较于仅使用均方误差(MSE)损失函数训练的LSTM模型,TgDPF能够与预先计算的风电功率曲线保持一致,从而提高预测的可靠性与鲁棒性。在25台不同风力发电机上的实验结果表明,当向风速数据中加入不同比例的噪声时,TgDPF的性能明显优于传统LSTM模型。具体而言,当加入无偏高噪声N(0, 0.5)和N(0, 0.7)时,TgDPF分别比基于MSE损失训练的LSTM模型性能提升24.7%和35.8%;而在加入有偏高噪声N(0.5, 0.5)和N(0.7, 0.7)的情况下,TgDPF的性能分别超越LSTM模型67.2%和73.9%。
English Abstract
Abstract Wind power plays a critical role in achieving carbon neutrality as one of the key renewable energy sources . However, accurate wind power forecasting is challenged by high-noise forecast wind speed data, compromising forecast accuracy and robustness. To address this issue, we propose theory-guided (physics-constrained) deep-learning wind power forecasting (TgDPF). TgDPF integrates the domain knowledge of wind power curves, which represent the probability distribution of wind power, with the deep learning model Long Short-Term Memory (LSTM). This integration ensures that the model's output aligns with the probability distribution of the wind power, adhering to physical constraints and enhancing noise resistance. Consequently, TgDPF exemplifies a physics-constrained method. While the probability distribution of wind power is crucial for accurate predictions, effectively utilizing this distribution presents significant challenges, including maintaining model differentiability after embedding the distribution and measuring distribution similarity. To overcome these challenges, TgDPF employs kernel density estimation (KDE) to compute the wind power curve, ensuring the model's differentiability. The discrepancy between the LSTM-generated and actual wind power curves, quantified by the Jensen-Shannon (JS) divergence, is incorporated into the LSTM training process. Compared to the MSE loss-trained LSTM model, TgDPF aligns with the pre-calculated wind power curve, enhancing forecasting reliability and robustness. Experiments on 25 different wind turbines show that the performance of TgDPF is obviously better than that of LSTM when adding noise of different proportions to wind speed. Specifically, when unbiased high noise N(0, 0.5), N(0, 0.7) is added, TgDPF outperforms the MSE loss-trained LSTM model by 24.7 % and 35.8 % respectively. Additionally, with biased high noise N(0.5, 0.5), N(0.7, 0.7), TgDPF surpasses the LSTM model by 67.2 % and 73.9 % respectively.
S
SunView 深度解读
该物理约束深度学习风电预测技术对阳光电源储能系统(ST系列PCS、PowerTitan)具有重要应用价值。通过融合风电功率曲线概率分布与LSTM模型,在高噪声环境下预测精度提升24.7%-73.9%,可显著优化储能系统的充放电策略与能量管理。该方法的抗噪声特性与物理约束思想可迁移至iSolarCloud平台的预测性维护模块,结合GFM/VSG控制技术提升新能源并网稳定性。核心的概率分布对齐方法为SG系列逆变器的MPPT优化算法提供创新思路,通过物理约束增强功率预测鲁棒性,支撑源网荷储协同控制。