← 返回
风电变流技术 储能系统 SiC器件 深度学习 ★ 5.0

基于期望实现的深度学习的风电功率与爬坡率确定性及概率预测

Deterministic and Probabilistic Forecasting of Wind Power Generation and Ramp Rate With Expectation-Implemented Deep Learning

作者 Min-Seung Ko · Hao Zhu · Kyeon Hur
期刊 IEEE Transactions on Sustainable Energy
出版日期 2025年7月
技术分类 风电变流技术
技术标签 储能系统 SiC器件 深度学习
相关度评分 ★★★★★ 5.0 / 5.0
关键词 风电功率预测 爬坡率预测 深度学习模型 预测框架 风电波动性
语言:

中文摘要

准确的日前风电功率确定性与概率预测对电力系统可靠高效运行至关重要,尤其在以可再生能源为主导的系统中。同时,风电固有的波动性要求对爬坡率进行日前预测以保障能量平衡。为此,本文提出一种小时级日前预测框架,可同时预测风电出力与爬坡率。该框架采用基于定制损失函数的期望实现深度学习模型,结合特征构造与前馈误差学习策略,在多任务间保持平衡并提升性能。框架进一步融合异构模型输出,生成发电量与爬坡率的概率预测。基于真实数据的实验验证了各模块的有效性,结果表明所提方法能有效识别风电内在波动特性,充分挖掘其应用潜力。

English Abstract

Accurate day-ahead forecasting of wind power generation, both deterministically and probabilistically, is crucial for reliable and efficient power system operations, and its significance will increase in renewable energy-dominant power systems. Furthermore, inherent variability of wind farms necessitates day-ahead ramp rate forecasting to ensure stable energy balancing. To address these needs, we propose an hourly day-ahead forecasting framework that concurrently predicts the wind power generation and ramp rate. This framework leverages expectation-implemented deep learning models trained by the custom loss functions tailored to the different signal attributes and our distinct expectations. Additional strategies, such as feature generation and a feedforward error learning model, are implemented to enhance forecasting performance while maintaining a balance between tasks. Finally, our framework integrates heterogeneous generation and ramp rate forecasting results, incorporating probabilistic ramp rate forecasting derived from the synthesized output. We validate our approach using real wind power data and assess the impact of each proposed method individually. The results demonstrate that the proposed framework can significantly contribute to identifying the intrinsic volatility of wind power, thereby fully exploiting its potential benefits.
S

SunView 深度解读

该风电功率与爬坡率预测技术对阳光电源储能产品线具有重要应用价值。可直接应用于PowerTitan大型储能系统的调度优化,通过深度学习模型预测风电波动特性,提前部署储能容量与功率配置。对ST系列储能变流器的GFM控制策略也有重要参考意义,可基于预测结果优化VSG参数设置,提升系统稳定性。此外,该技术可集成至iSolarCloud平台,为风储联合运行提供智能调度依据,实现储能系统经济性与可靠性的平衡。建议将此预测框架与阳光现有储能EMS系统深度融合,进一步提升产品竞争力。