← 返回
风电变流技术 SiC器件 深度学习 ★ 5.0

一种用于风力涡轮机应用中精确预测三维时空风场的新型频域物理信息神经网络

A novel frequency-domain physics-informed neural network for accurate prediction of 3D spatio-temporal wind fields in wind turbine applications

语言:

中文摘要

摘要 风能是全球关键的清洁能源之一。风力涡轮机的结构安全性和动力响应分析在很大程度上受到其所在位置风速数据可获得性与精度的影响。然而,气象观测站分布稀疏,通常难以获取高分辨率的空间风速数据,因此需要采用条件模拟方法来补充低分辨率的观测数据。本研究针对这一挑战,提出了一种频域物理信息神经网络(FD-PINN),该方法利用频域信息,旨在实现对风力涡轮机三维(3D)时空风场的精准预测。该方法构建了一个深度神经网络,并将其与关键物理模型相结合,包括风谱、风场相干函数以及风速廓线。通过融合这些物理先验知识,该网络能够在风场样本稀疏的环境中准确预测风况。本文通过将所提出方法的预测性能与传统神经网络方法及实际观测数据进行对比,评估了其有效性。研究结果表明,与传统方法相比,引入频域信息显著提高了风力涡轮机空间风速分布预测的准确性,同时降低了风速在空间上的依赖性问题。通过对真实风场数据的验证,进一步证实了该FD-PINN模型在预测三维时空风场方面的可行性与高精度。

English Abstract

Abstract Wind power is a pivotal clean energy source worldwide. The structural safety and dynamic response analysis of wind turbines is significantly impacted by the availability and precision of wind speed data at their location. However, the sparse distribution of meteorological stations often makes it difficult to obtain high-resolution spatial wind speed data. This necessitates the application of conditional simulation to supplement low-resolution observational data. This study addresses this challenge by developing a frequency-domain physics-informed neural network (FD-PINN) designed to predict three-dimensional (3D) spatio-temporal wind fields for wind turbines by leveraging frequency-domain information. This approach involves constructing a deep neural network and integrating it with key physical models, including wind spectra, wind field coherence functions, and wind profiles . This integration allows the network to accurately predict wind conditions in environments with sparse wind field samples. The efficacy of our proposed methodology is assessed by comparing its predictive performance against traditional neural network approaches and actual observation data. Our findings demonstrate that integrating frequency-domain information significantly enhances the accuracy of spatial wind speed distribution predictions for wind turbines , compared to conventional methods. Additionally, this approach reduces spatial dependency issues with wind speed. Validation against real-world wind fields further confirms the feasibility and precision of this FD-PINN model in predicting 3D spatio-temporal wind fields.
S

SunView 深度解读

该频域物理信息神经网络技术对阳光电源风电变流器及新能源场站具有重要价值。通过高精度3D时空风场预测,可优化SG系列风电变流器的功率预测算法和主动抗扰控制策略,提升MPPT效率。结合iSolarCloud平台,该深度学习方法可增强风光储混合电站的预测性维护能力,优化储能系统ST系列PCS的充放电策略。频域物理约束思路也可借鉴至SiC器件热场仿真和GFM控制参数自适应优化,提升系统动态响应性能。