找到 3 条结果
基于时空知识蒸馏的居民用户电力负荷预测
Electric Load Forecasting for Individual Households via Spatial-Temporal Knowledge Distillation
Weixuan Lin · Di Wu · Michael Jenkin · IEEE Transactions on Power Systems · 2024年4月
随着电网安全运行和家庭能源管理系统的发展,居民用户的短期负荷预测(STLF)日益重要。尽管机器学习在住宅STLF中表现有效,但本地设备的数据与资源限制制约了个体用户预测的精度。相比之下,电力公司拥有更丰富的数据和更强的计算能力,可部署基于图神经网络(GNN)等复杂模型,挖掘用户间的时空关联以提升预测性能。本文提出一种高效且保护隐私的知识蒸馏框架,通过将基于公用数据预训练的GNN模型中的时空知识迁移至轻量级个体模型,在不访问其他用户数据的前提下提升个体预测精度。在真实住宅负荷数据集上的实验验证了该...
解读: 该时空知识蒸馏负荷预测技术对阳光电源户用储能系统(如ST系列)和iSolarCloud平台具有重要应用价值。可将云端基于海量用户数据训练的GNN预测模型压缩至本地ESS控制器,在保护用户隐私前提下实现高精度负荷预测,优化储能充放电策略和光储协同控制。该轻量化模型可嵌入户用逆变器DSP/ARM芯片,降...
基于期望实现的深度学习的风电功率与爬坡率确定性及概率预测
Deterministic and Probabilistic Forecasting of Wind Power Generation and Ramp Rate With Expectation-Implemented Deep Learning
Min-Seung Ko · Hao Zhu · Kyeon Hur · IEEE Transactions on Sustainable Energy · 2025年7月
准确的日前风电功率确定性与概率预测对电力系统可靠高效运行至关重要,尤其在以可再生能源为主导的系统中。同时,风电固有的波动性要求对爬坡率进行日前预测以保障能量平衡。为此,本文提出一种小时级日前预测框架,可同时预测风电出力与爬坡率。该框架采用基于定制损失函数的期望实现深度学习模型,结合特征构造与前馈误差学习策略,在多任务间保持平衡并提升性能。框架进一步融合异构模型输出,生成发电量与爬坡率的概率预测。基于真实数据的实验验证了各模块的有效性,结果表明所提方法能有效识别风电内在波动特性,充分挖掘其应用潜力...
解读: 该风电功率与爬坡率预测技术对阳光电源储能产品线具有重要应用价值。可直接应用于PowerTitan大型储能系统的调度优化,通过深度学习模型预测风电波动特性,提前部署储能容量与功率配置。对ST系列储能变流器的GFM控制策略也有重要参考意义,可基于预测结果优化VSG参数设置,提升系统稳定性。此外,该技术可...
时空特征增强的多类型可再生能源与负荷不确定性功率跟踪预测框架
Spatio-temporal feature amplified forecasting framework for uncertain power tracking of multitype renewable energy and loads
Yanli Liu · Ziwen Jia · Liqi Liu · Applied Energy · 2025年1月 · Vol.400
摘要 多类型可再生能源与负荷(如光伏、风电和电动汽车)的集成显著增加了电力供需两侧的不确定性,因此需要精确的预测技术以维持电网的安全稳定运行。然而,复杂的时空特征给现有预测方法带来了挑战,使其难以准确、及时地跟踪不确定性功率的瞬时变化。为此,本文提出了一种时空特征增强(STFA)预测框架,该框架可无缝嵌入当前先进的深度学习算法中。首先,构建了一个时空特征融合模块,逐步结合相空间重构、位置编码和掩码机制,通过一系列重组步骤增强时空特征,提升模型对不确定性波动的理解能力,从而支持训练过程。其次,在深...
解读: 该时空特征增强预测框架对阳光电源多条产品线具有重要应用价值。针对光伏SG系列逆变器,可通过精准预测辐照波动优化MPPT算法响应速度;对ST系列储能变流器和PowerTitan系统,能提升功率调度精度,降低电池循环损耗;在充电桩业务中可预测EV负荷峰谷,优化充电策略。该框架的自适应动态加权损失函数特别...