← 返回

基于时空知识蒸馏的居民用户电力负荷预测

Electric Load Forecasting for Individual Households via Spatial-Temporal Knowledge Distillation

作者 Weixuan Lin · Di Wu · Michael Jenkin
期刊 IEEE Transactions on Power Systems
出版日期 2024年4月
技术分类 储能系统技术
技术标签 储能系统 户用光伏 地面光伏电站 机器学习 深度学习
相关度评分 ★★★★ 4.0 / 5.0
关键词 短期负荷预测 居民用户 知识蒸馏 图神经网络 预测框架
语言:

中文摘要

随着电网安全运行和家庭能源管理系统的发展,居民用户的短期负荷预测(STLF)日益重要。尽管机器学习在住宅STLF中表现有效,但本地设备的数据与资源限制制约了个体用户预测的精度。相比之下,电力公司拥有更丰富的数据和更强的计算能力,可部署基于图神经网络(GNN)等复杂模型,挖掘用户间的时空关联以提升预测性能。本文提出一种高效且保护隐私的知识蒸馏框架,通过将基于公用数据预训练的GNN模型中的时空知识迁移至轻量级个体模型,在不访问其他用户数据的前提下提升个体预测精度。在真实住宅负荷数据集上的实验验证了该方法的有效性。

English Abstract

Short-term load forecasting (STLF) for residential households has become of critical importance for the secure operation of power grids as well as home energy management systems. While machine learning is effective for residential STLF, data and resource limitations hinder individual household predictions operated on local devices. In contrast, utility companies have access to broader sets of data as well as to better computational resources, and thus have the potential to deploy complex forecasting models such as Graph neural network-based models to explore the spatial-temporal relationships between households for achieving impressive STLF performance. In this work, we propose an efficient and privacy-conservative knowledge distillation-based STLF framework. This framework can improve the STLF forecasting accuracy of lightweight individual household forecasting models via leveraging the benefits of knowledge distillation and graph neural networks (GNN). Specifically, we distill the knowledge learned from a GNN model pre-trained on utility data sets into individual models without the need to access data sets of other households. Extensive experiments on real-world residential electric load datasets demonstrate the effectiveness of the proposed method.
S

SunView 深度解读

该时空知识蒸馏负荷预测技术对阳光电源户用储能系统(如ST系列)和iSolarCloud平台具有重要应用价值。可将云端基于海量用户数据训练的GNN预测模型压缩至本地ESS控制器,在保护用户隐私前提下实现高精度负荷预测,优化储能充放电策略和光储协同控制。该轻量化模型可嵌入户用逆变器DSP/ARM芯片,降低对云端通信依赖,提升离线运行能力。对于PowerTitan大型储能系统,可通过多站点时空关联挖掘优化电网侧调度策略。该技术与阳光现有的智能诊断、预测性维护形成互补,增强能源管理系统的智能化水平,支撑虚拟电厂VPP场景下的分布式能源聚合优化。