找到 7 条结果

排序:
电动汽车驱动 SiC器件 深度学习 ★ 5.0

基于物理信息图学习的大规模机组组合问题求解

Solve Large-scale Unit Commitment Problems by Physics-informed Graph Learning

Jingtao Qin · Nanpeng Yu · IEEE Transactions on Power Systems · 2025年4月

机组组合(UC)问题通常建模为混合整数规划(MIP),并通过分支定界(B&B)算法求解。近年来,图神经网络(GNN)通过学习“下潜”与“分支”策略来增强现代MIP求解器的性能。然而,现有GNN模型多基于数学表达构建,在处理大规模UC问题时计算代价较高。本文提出一种物理信息引导的分层图卷积网络(PI-GCN),用于神经下潜,利用电力系统各组件的物理特征寻找高质量变量赋值;同时采用基于MIP模型的图卷积网络(MB-GCN)进行神经分支。将二者嵌入现代MIP求解器,构建面向大规模UC问题的新型神经求解...

解读: 该物理信息图学习求解大规模机组组合技术对阳光电源储能系统和微网调度具有重要应用价值。在PowerTitan大型储能系统中,可优化多储能单元的充放电调度策略,显著降低综合运行成本;在iSolarCloud云平台的智能运维模块,可实现光储充一体化场景下的实时优化调度,通过PI-GCN快速求解含数百台SG...

储能系统技术 储能系统 深度学习 ★ 4.0

PowerFlowMultiNet:用于不平衡三相配电系统的多图神经网络

PowerFlowMultiNet: Multigraph Neural Networks for Unbalanced Three-Phase Distribution Systems

Salah Ghamizi · Jun Cao · Aoxiang Ma · Pedro Rodriguez · IEEE Transactions on Power Systems · 2024年9月

高效求解配电网中的三相不平衡潮流对于电网分析和仿真至关重要。迫切需要能够处理大规模不平衡电网的可扩展算法,以提供准确、快速的解决方案。为此,深度学习技术,尤其是图神经网络(GNN)应运而生。然而,现有文献主要集中在平衡网络,在支持三相不平衡电网方面存在重大空白。本文介绍了 PowerFlowMultiNet,这是一种专门为三相不平衡电网设计的新型多图 GNN 框架。该方法在多图表示中分别对每一相进行建模,有效捕捉了不平衡电网的固有不对称性。引入了一种利用消息传递的图嵌入机制,以捕捉电力系统网络内...

解读: 该多图神经网络潮流计算技术对阳光电源配电侧产品具有重要应用价值。在PowerTitan大型储能系统并网场景中,可实时分析三相不平衡工况下的潮流分布,优化ST系列储能变流器的三相功率调度策略,提升不平衡补偿能力。对于分布式光伏集群(SG逆变器阵列),该算法可快速评估不对称故障下的系统状态,为iSola...

功率器件技术 SiC器件 ★ 5.0

基于物理信息自监督预训练的GNN在大规模电力系统分析中的泛化能力提升

GNNs' Generalization Improvement for Large-Scale Power System Analysis Based on Physics-Informed Self-Supervised Pre-Training

Yuhong Zhu · Yongzhi Zhou · Wei Wei · Peng Li 等5人 · IEEE Transactions on Power Systems · 2025年2月

在人工智能驱动的电力系统分析(PSA)中,系统拓扑的高效且信息丰富的表示至关重要。尽管取得了重大突破,但近期采用图神经网络(GNNs)的方法在大规模电力系统分析中面临重大挑战,包括获取足够标注数据的高计算需求,以及对未见故障拓扑的泛化能力较差。为解决这些问题,我们提出了一种用于预训练图神经网络的自监督策略,该策略可在单个节点特征层面和整个图结构层面提升图神经网络的表达能力。通过集成物理信息技术,我们的策略使图神经网络能够内化适用于多个下游任务的基本原理。我们证明,我们的方法能够在无监督的情况下对...

解读: 该研究提出的物理信息自监督GNN框架对阳光电源的智能化产品升级具有重要价值。首先可应用于ST系列储能系统和SG系列光伏逆变器的电网拓扑感知与控制优化,提升GFM/GFL控制的适应性;其次可集成到iSolarCloud平台,增强分布式电站群的智能调度与故障诊断能力。该方法通过物理规律预训练提升模型泛化...

储能系统技术 储能系统 户用光伏 地面光伏电站 ★ 4.0

基于时空知识蒸馏的居民用户电力负荷预测

Electric Load Forecasting for Individual Households via Spatial-Temporal Knowledge Distillation

Weixuan Lin · Di Wu · Michael Jenkin · IEEE Transactions on Power Systems · 2024年4月

随着电网安全运行和家庭能源管理系统的发展,居民用户的短期负荷预测(STLF)日益重要。尽管机器学习在住宅STLF中表现有效,但本地设备的数据与资源限制制约了个体用户预测的精度。相比之下,电力公司拥有更丰富的数据和更强的计算能力,可部署基于图神经网络(GNN)等复杂模型,挖掘用户间的时空关联以提升预测性能。本文提出一种高效且保护隐私的知识蒸馏框架,通过将基于公用数据预训练的GNN模型中的时空知识迁移至轻量级个体模型,在不访问其他用户数据的前提下提升个体预测精度。在真实住宅负荷数据集上的实验验证了该...

解读: 该时空知识蒸馏负荷预测技术对阳光电源户用储能系统(如ST系列)和iSolarCloud平台具有重要应用价值。可将云端基于海量用户数据训练的GNN预测模型压缩至本地ESS控制器,在保护用户隐私前提下实现高精度负荷预测,优化储能充放电策略和光储协同控制。该轻量化模型可嵌入户用逆变器DSP/ARM芯片,降...

光伏发电技术 深度学习 ★ 5.0

基于图的大规模概率光伏功率预测方法:对时空缺失数据不敏感

Graph-Based Large Scale Probabilistic PV Power Forecasting Insensitive to Space-Time Missing Data

Keunju Song · Minsoo Kim · Hongseok Kim · IEEE Transactions on Sustainable Energy · 2024年8月

近年来,集成分布式能源的电力系统被用于应对气候变化,但也增加了系统的不确定性与复杂性,亟需考虑高精度的概率化预测方法。本文提出一种可扩展且对缺失数据不敏感的多站点光伏功率概率预测框架,专注于大规模光伏电站及时空数据缺失场景。所提出的基于图神经网络的随机粗粒度图注意力与概率时空学习机制,在预测精度和模型训练复杂度方面均表现优异,并能自适应地在时空域内填补缺失数据。消融实验表明,该框架能有效捕捉大规模光伏站点间的复杂时空特征。在超过1600个光伏站点及三类时空缺失数据上的实验结果显示,平均预测性能提...

解读: 该基于图神经网络的大规模光伏功率概率预测技术对阳光电源iSolarCloud智能运维平台具有重要应用价值。可直接应用于:1)SG系列逆变器集群的功率预测与调度优化,通过时空关联建模提升多站点协同控制精度;2)PowerTitan储能系统的充放电策略制定,基于概率预测结果优化能量管理;3)智能诊断系统...

储能系统技术 储能系统 DAB 可靠性分析 ★ 4.0

基于拓扑数据分析和图神经网络的供应链金融信用风险评估新型混合模型

A Novel Hybrid Model for Credit Risk Assessment of SCF Based on TDA and GNN

Kosar Farajpour Mojdehi · Babak Amiri · Amirali Haddadi · IEEE Access · 2025年1月

能源领域供应链金融SCF因需要可持续高效金融解决方案管理供应商、金融机构和能源公司等利益相关方间复杂互动而成为关键关注领域。本研究提出新型混合拓扑数据分析TDA和图神经网络GNN优化SCF信用风险评估。通过利用BallMapper拓扑数据分析模型和基于网络的特征,所提模型对信用风险因素提供更深入见解,增强中小企业信用风险评估准确性和可靠性。结果表明所提BallMapper-图神经网络BM-GNN模型达到更高准确率和F1分数,优于传统机器学习方法。值得注意的是,将基于网络的特征与财务比率结合在信用...

解读: 该信用风险评估技术对阳光电源供应链金融和客户信用管理具有应用价值。阳光在新能源项目融资和设备租赁场景需要精准的信用风险评估。该研究的图神经网络和拓扑分析方法可集成到阳光金融服务平台,分析客户网络关系和财务数据,识别潜在风险。在光伏储能项目开发中,该技术可评估EPC总包商和业主的信用状况,降低项目风险...

储能系统技术 储能系统 深度学习 ★ 5.0

基于图神经网络的电力系统实时多稳定性风险评估与可视化

Real-Time Multi-Stability Risk Assessment and Visualization of Power Systems: A Graph Neural Network-Based Method

Qifan Chen · Siqi Bu · Huaiyuan Wang · Chao Lei · IEEE Transactions on Power Systems · 2024年12月

相较于单一稳定性评估,多稳定性风险评估(MSRA)在应对可再生能源出力波动和系统故障等不确定性时更具实用性。本文提出一种基于图神经网络(GNN)的实时MSRA方法,统一处理功角、电压、频率及换流器主导的多种稳定性问题。通过构建运行状态图与扰动图作为GNN输入,结合图卷积层与初始残差恒等映射,提取高阶特征;引入GraphNorm缓解过平滑并提升泛化能力。基于实时数据实现多稳定性风险的连续预测,并利用alpha形状可视化稳定与不稳定区域。在IEEE 39节点、WECC 179节点及英国电网系统中的仿...

解读: 该GNN多稳定性评估技术对阳光电源PowerTitan储能系统及iSolarCloud平台具有重要应用价值。针对大规模储能电站中ST系列变流器的构网型GFM控制,该方法可实时评估功角、电压、频率及换流器主导的多维稳定性风险,解决可再生能源波动下的系统安全问题。其图神经网络架构可集成至智能运维平台,实...