← 返回
光伏发电技术 深度学习 ★ 5.0

基于图的大规模概率光伏功率预测方法:对时空缺失数据不敏感

Graph-Based Large Scale Probabilistic PV Power Forecasting Insensitive to Space-Time Missing Data

作者 Keunju Song · Minsoo Kim · Hongseok Kim
期刊 IEEE Transactions on Sustainable Energy
出版日期 2024年8月
技术分类 光伏发电技术
技术标签 深度学习
相关度评分 ★★★★★ 5.0 / 5.0
关键词 分布式能源 光伏功率预测 图神经网络 时空缺失数据 大规模光伏站点
语言:

中文摘要

近年来,集成分布式能源的电力系统被用于应对气候变化,但也增加了系统的不确定性与复杂性,亟需考虑高精度的概率化预测方法。本文提出一种可扩展且对缺失数据不敏感的多站点光伏功率概率预测框架,专注于大规模光伏电站及时空数据缺失场景。所提出的基于图神经网络的随机粗粒度图注意力与概率时空学习机制,在预测精度和模型训练复杂度方面均表现优异,并能自适应地在时空域内填补缺失数据。消融实验表明,该框架能有效捕捉大规模光伏站点间的复杂时空特征。在超过1600个光伏站点及三类时空缺失数据上的实验结果显示,平均预测性能提升7%–10%和6%–25%,确保了预测的准确性与稳定性。

English Abstract

In recent years, power systems integrated with distributed energy resources (DERs) have been considered to mitigate climate change. However, this makes power systems even more uncertain and complex, so uncertainty-aware accurate forecasting needs to be considered for the massive penetration of renewable energy. To this end, we propose a scalable and missing-insensitive framework for probabilistic multi-site photovoltaic (PV) power forecasting, specifically focused on large-scale PV sites and space-time missing data. By leveraging the graph neural network (GNN), the proposed scalable graph learning mechanism with random coarse graph attention and probabilistic spatio-temporal learning performs efficiently for large-scale PV sites in terms of forecasting accuracy and model training complexity. At the same time, our framework adaptively imputes the missing PV data in the space and time domain, respectively. Ablation study results demonstrate that our framework is effective for extracting complex spatial-temporal features across large-scale PV sites. Under extensive experiments, our framework shows 7 - 10% and 6 - 25% improvement on average for over 1600 PV sites and three types of space-time missing data, which ensures accurate and stable forecasting.
S

SunView 深度解读

该基于图神经网络的大规模光伏功率概率预测技术对阳光电源iSolarCloud智能运维平台具有重要应用价值。可直接应用于:1)SG系列逆变器集群的功率预测与调度优化,通过时空关联建模提升多站点协同控制精度;2)PowerTitan储能系统的充放电策略制定,基于概率预测结果优化能量管理;3)智能诊断系统的数据容错能力提升,其对时空缺失数据的鲁棒性可解决实际运维中通信中断、传感器故障等问题。该技术7%-25%的预测精度提升可显著降低储能系统配置冗余,提高光储协同效率,增强阳光电源大规模新能源电站解决方案的市场竞争力。