← 返回
用于光伏输出预测的混合机器学习模型:结合随机森林与LSTM-RNN实现鱼菜共生系统的可持续能源管理
Hybrid Machine learning models for PV output prediction: Harnessing Random Forest and LSTM-RNN for sustainable energy management in aquaponic system
| 作者 | Tresna Dewi · Elsa Nurul Mardiyat · Pola Risma · Yurni Oktarin |
| 期刊 | Energy Conversion and Management |
| 出版日期 | 2025年1月 |
| 卷/期 | 第 330 卷 |
| 技术分类 | 光伏发电技术 |
| 技术标签 | 储能系统 机器学习 深度学习 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | A hybrid LSTM-RNN and RF model enhances [PV](https://www.sciencedirect.com/topics/materials-science/photovoltaics "Learn more about PV from ScienceDirect's AI-generated Topic Pages") output prediction in aquaponic systems. |
语言:
中文摘要
准确预测光伏发电(PV)系统输出对于优化可持续鱼菜共生系统中的能源管理至关重要,其中太阳辐照度的波动带来了重大挑战。本研究提出了一种结合长短期记忆循环神经网络(LSTM-RNN)与随机森林(RF)的混合模型,以有效应对这些挑战。该模型融合了LSTM-RNN在建模时间依赖性方面的优势以及RF在特征选择和处理非线性数据方面的能力,从而在电压、电流、功率和辐照度等参数上展现出优越的预测精度。通过采用包括归一化和序列转换在内的先进预处理步骤,使数据集与时间模式对齐,提升了模型的学习效率。评估指标如均方根误差(RMSE)和平均绝对误差(MAE)验证了模型的精确性,其中电压的RMSE为0.0768,电流为0.037,辐照度为0.0363,性能优于单独使用的LSTM模型(RMSE > 5%)和RF模型。RF组件优先考虑太阳辐照度和温度等关键预测因子,分别对精度贡献45%和22%。该混合模型支持在日照高峰期间高效储存能量,并在辐照度较低时实现稳定的电力分配,确保鱼菜共生系统中水体循环和照明等关键功能的可靠运行。其可扩展性和适应性使其成为提高能源效率和降低运营成本的有力工具。未来的研究将探索该模型在更大规模光伏装置中的应用及其与天气预报的集成,以增强在不同环境条件下的性能表现。本研究强调了混合模型在推动可再生能源预测技术进步和促进农业可持续发展方面的变革潜力。
English Abstract
Abstract Accurately forecasting photovoltaic (PV) System output is vital for optimizing energy management in sustainable aquaponic systems, where fluctuating solar irradiance poses significant challenges. This study presents a hybrid Long Short-Term Memory Recurrent Neural Network (LSTM-RNN) and Random Forest (RF) model to address these challenges effectively. By integrating LSTM-RNN’s capability to model temporal dependencies with RF’s strength in feature selection and non-linear data handling, the model demonstrates superior predictive accuracy across parameters such as voltage, current, power, and irradiance. Advanced preprocessing steps, including normalization and sequence transformation, are employed to align datasets with temporal patterns, enhancing the model’s learning efficiency. Evaluation metrics, such as Root Mean Squared Error (RMSE) and Mean Absolute Error, validate the model’s precision, with RMSE values of 0.0768 for voltage, 0.037 for current, and 0.0363 for irradiance, outperforming standalone LSTM (RMSE > 5 %) and RF models. The RF component prioritizes critical predictors like solar irradiance and temperature, contributing 45 % and 22 % to accuracy, respectively. The hybrid model supports efficient energy storage during peak sunlight and consistent power distribution during low irradiance, ensuring reliable operation of aquaponic systems for water circulation and lighting. Its scalability and adaptability make it a promising tool for improving energy efficiency and reducing operational costs. Future research will explore its application in larger PV installations and integration with weather forecasts, enhancing performance under diverse environmental conditions. This study underscores the transformative potential of hybrid models in advancing renewable energy forecasting and promoting agricultural sustainability.
S
SunView 深度解读
该混合机器学习模型对阳光电源iSolarCloud智慧运维平台具有重要应用价值。LSTM-RNN与随机森林结合的预测方法可集成至SG系列光伏逆变器的MPPT优化算法,提升发电预测精度(RMSE<0.08)。模型对辐照度和温度的特征优先级分析(贡献度45%和22%)可优化ST系列储能PCS的充放电策略,实现削峰填谷。预测性维护能力与PowerTitan储能系统的能量管理深度融合,降低运营成本,特别适用于农光互补等分布式场景,推动可再生能源智能化管理。