← 返回
一种用于长期光伏和风电功率预测的细粒度频率分解框架
A fine-grained frequency decomposition framework for long-term photovoltaic and wind power forecasting
| 作者 | Peng Suna · Tingxiao Dinga · Jin Sua · Yuhan Yanga · Yan Chena · Xiaochun Hub · Yiming Qinc · Houjian Zhanc |
| 期刊 | Solar Energy |
| 出版日期 | 2025年1月 |
| 卷/期 | 第 301 卷 |
| 技术分类 | 光伏发电技术 |
| 技术标签 | 储能系统 机器学习 深度学习 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | The proposed method combines wavelet transform continuous sampling and interval sampling. |
语言:
中文摘要
准确预测太阳能和风能对于实现高效的电网集成至关重要。然而,现有的机器学习和深度学习方法在处理复杂且变化多端的时间序列数据时面临若干挑战,例如通用性有限、泛化能力不足,以及难以平衡计算效率与预测精度之间的关系。为应对这些挑战,本研究提出了一种细粒度频率分解框架(FDF),并设计了一种基于小波变换与下采样策略(连续采样和间隔采样)的序列分解方案。该框架旨在深入挖掘时间序列中的复杂时序模式,并充分捕捉长距离依赖关系。具体而言,FDF首先利用小波变换将原始时间序列分解为多个不同频率的分量;随后,对每个分量分别进行连续采样和间隔采样,从而进一步提取各频率带内的短期波动和长期趋势特征。本文在两个风电功率数据集和一个光伏发电数据集上开展了长期预测的大量实验。结果表明,FDF在均方误差(MSE)上平均降低了11.42%,在平均绝对误差(MAE)上平均降低了7.65%,同时仅引入平均0.0015 G FLOPs的计算量和0.2873 M的模型参数量。该框架不仅表现出优异的预测性能和良好的泛化能力,还具备突出的轻量化特性。
English Abstract
Abstract Accurate forecasting of solar and wind energy is critical for achieving efficient grid integration. However, existing machine learning and deep learning methods face several challenges when handling complex and varying time series data, such as limited universality, insufficient generalization, and difficulty balancing computational efficiency and prediction accuracy. To address these challenges, this study proposes a fine-grained frequency decomposition framework (FDF) and designs a sequence decomposition scheme based on wavelet transform and down-sampling strategy (continuous sampling and interval sampling). The framework aims to deeply explore intricate temporal patterns in time series and fully capture long-range dependencies. More concretely, FDF applies wavelet transform to break down the original time series into multiple components of different frequencies. Then, each component undergoes continuous and interval sampling separately, which further extracts short-term fluctuations and long-term trends within each frequency band. Extensive experiments were conducted on two wind power datasets and one photovoltaic dataset for long-term forecasting. Results indicate that FDF achieved average reductions of 11.42 % in MSE and 7.65 % in MAE, with an average of 0.0015 G FLOPs and 0.2873 M parameters. It not only demonstrated excellent predictive performance and generalization capability but also outstanding lightweight characteristics.
S
SunView 深度解读
该细粒度频率分解框架对阳光电源iSolarCloud智慧运维平台及储能系统具有重要应用价值。通过小波变换与采样策略结合,可显著提升光伏功率预测精度(MAE降低7.65%),同时保持轻量化特性(0.29M参数)。该方法可集成至ST系列PCS的功率预测模块,优化PowerTitan储能系统的充放电策略制定;亦可增强SG系列逆变器的MPPT算法,实现更精准的发电曲线预判。其长期依赖捕获能力对电网友好型GFM控制策略的前瞻性调度具有直接优化价值,可提升新能源并网稳定性与经济效益。