← 返回
基于改进数学模型的数据预处理与机器学习方法用于推断光伏系统发电量
Data preprocessing and machine learning method based on ameliorated mathematical models for inferring the power generation of photovoltaic system
| 作者 | Woo Gyun Shin · Jinseok Le · Young Chul Ju · Hey Mi Hwang · Suk Whan Ko |
| 期刊 | Energy Conversion and Management |
| 出版日期 | 2025年1月 |
| 卷/期 | 第 333 卷 |
| 技术分类 | 光伏发电技术 |
| 技术标签 | 储能系统 机器学习 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | An ameliorated mathematical model considering loss factors is proposed for the [PV](https://www.sciencedirect.com/topics/materials-science/photovoltaics "Learn more about PV from ScienceDirect's AI-generated Topic Pages") array. |
语言:
中文摘要
摘要 全球各国正在积极推动能源转型,以减缓气候变化并促进长期可持续发展。这一转型过程涉及向无碳电力来源的转变,其中太阳能发挥着关键作用。随着光伏(PV)系统安装量的增加,这些系统对电网供电的贡献比例也不断上升。然而,由于天气条件会影响光伏发电量,准确推断其输出功率对于确保电网稳定性以及评估发电效率至关重要。本文提出了一种面向机器学习回归模型的数据预处理方法,该方法利用数学模型,基于辐照度和组件温度数据来推断光伏系统的发电量。所提方法的独特之处在于其归一化过程:将实测的电压和电流值除以通过数学模型计算得到的对应值。实验结果表明,该方法构建的回归模型具有很高的精度,直流电压、直流电流和交流功率的决定系数(R²)分别达到0.9477、0.9967和0.9969,且归一化均方根误差(NRMSE)均控制在3%以内。
English Abstract
Abstract Countries worldwide are actively pursuing energy transition efforts to mitigate climate change and promote long-term sustainability. This transition involves shifting to carbon-free power sources, with solar energy playing a crucial role. As the installation of photovoltaic (PV) systems increases, the proportion of electricity these systems contribute to the power grid also rises. However, since weather conditions influence PV power generation, accurately inferring power output is essential for ensuring grid stability and assessing power generation efficiency. This paper presents a data preprocessing method for machine-learning regression models, utilizing a mathematical model to infer PV system power generation based on irradiance and module temperature data. The distinctiveness of the proposed method lies in its normalization process, where measured voltage and current values are divided by the corresponding values computed using the mathematical model. The proposed approach resulted in a highly accurate regression model, achieving coefficients of determination (R 2 ) values of 0.9477, 0.9967, and 0.9969 for DC voltage, DC current, and AC power, respectively, along with normalized root mean squared error (NRMSE) values within 3%.
S
SunView 深度解读
该研究提出的基于改进数学模型的数据预处理和机器学习方法,对阳光电源iSolarCloud智慧运维平台具有重要应用价值。通过归一化处理实测电压电流与模型计算值的比值,可显著提升光伏发电功率预测精度(R²达0.9969),这与SG系列逆变器的MPPT优化技术高度契合。该方法可集成至预测性维护系统,结合ST系列储能变流器实现更精准的充放电策略优化,提升电网稳定性。建议将此数据预处理框架应用于PowerTitan储能系统的功率预测模块,并与GFM/GFL控制技术协同,进一步增强新能源并网的可靠性和发电效率评估能力。