← 返回
物理信息机器学习在太阳能热能系统中的应用
Physics-Informed machine learning for solar-thermal power systems
语言:
中文摘要
摘要 传统的热能系统建模依赖于实验关联式,通过无量纲数和热物理性质来估算传热系数。针对不同的流动状态、系统几何结构和边界条件,已提出了多种关联式;然而,尽管这些关联式被广泛使用,它们在精度、适用流动状态范围以及对复杂系统几何结构的适应性方面仍存在显著局限性。此外,由间歇性可再生能源(如太阳能)驱动的系统由于传热系数和系统变量的剧烈波动,面临更大的挑战。在本研究中,我们从根本上改变了这一传统范式。我们展示了一种经过实验验证的、基于物理信息的机器学习方法,能够准确估计在能量输入、边界条件和负载具有高度变化性的太阳能热能系统中随时间变化的传热系数。该方法将数据与控制物理规律相结合,相较于纯粹数据驱动的框架,提供了更精确的建模方案,同时克服了传统实验关联式的局限性,并减少了对大量历史数据进行离线训练的需求。更广泛而言,所提出的这一范式转变可应用于其他能源电站及复杂的系统集成体系中。
English Abstract
Abstract Thermal energy system modeling traditionally relies on experimental correlations to estimate heat transfer coefficients using dimensionless numbers and thermophysical properties. Multiple correlations have been proposed for different flow regimes, system geometries, and boundary conditions; however, despite their widespread use, these correlations present significant limitations related to accuracy, valid flow regime ranges, and adaptability to complex system geometries. Moreover, systems powered by intermittent renewable sources, such as solar, face added challenges due to high fluctuations in heat transfer coefficients and system variables. In this work, we change fundamentally this old paradigm. We demonstrate an experimentally validated, physics-informed machine learning approach to accurately estimate time-dependent heat transfer coefficients in solar-thermal energy systems with high variability in energy input, boundary conditions, and load. This method combines data with governing physics, providing a more accurate modeling alternative to purely data-driven frameworks and addressing the limitations of traditional experimental correlations and the need for extensive historical data for offline training. More broadly, the proposed paradigm shift can be employed in other energy plants and complex systems-of-systems.
S
SunView 深度解读
该物理信息机器学习技术对阳光电源光储系统具有重要价值。针对光伏间歇性导致的热管理波动问题,可应用于PowerTitan储能系统和ST系列PCS的热设计优化,实时预测功率器件温度场分布,替代传统经验公式。结合iSolarCloud平台,可实现SiC/GaN器件的预测性热管理,提升系统可靠性。该方法突破传统关联式局限,为复杂拓扑结构的散热设计提供数据物理融合的新范式,可延伸至充电桩等高功率密度产品的热仿真与优化。