← 返回
光伏发电技术 储能系统 SiC器件 可靠性分析 机器学习 ★ 5.0

基于LightGBM与自注意力编码-解码网络的日前太阳能功率预测

Day-Ahead Solar Power Forecasting Using LightGBM and Self-Attention Based Encoder-Decoder Networks

作者 Hossein Nourollahi Hokmabad · Oleksandr Husev · Juri Belikov
期刊 IEEE Transactions on Sustainable Energy
出版日期 2024年10月
技术分类 光伏发电技术
技术标签 储能系统 SiC器件 可靠性分析 机器学习
相关度评分 ★★★★★ 5.0 / 5.0
关键词 可再生能源 数据驱动预测 混合预测框架 机器学习 光伏应用
语言:

中文摘要

可再生能源大规模并网带来的随机性与间歇性对电网可靠性与稳定性构成挑战,数据驱动的预测方法在缓解该问题中至关重要。然而,在历史数据不足的情况下,纯数据驱动模型性能往往受限。为此,本文提出一种融合物理模型与机器学习的新型日前光伏功率混合预测框架,提升低数据场景下的预测可靠性;同时针对数据丰富环境设计了一种创新的机器学习流水线。该方法包含针对不同天气条件定制的回归器组与基于自注意力的编码-解码网络,并通过元学习器融合双分支输出,显著提升了预测精度。实验结果表明,所提方法在测试数据集上优于基准模型。

English Abstract

The burgeoning trend of integrating renewable energy harvesters into the grid introduces critical issues for its reliability and stability. These issues arise from the stochastic and intermittent nature of renewable energy sources. Data-driven forecasting tools are indispensable in mitigating these challenges with their rugged performance. However, tools relying solely on data-driven methods often underperform when an adequate amount of recorded data is unattainable. To bridge this gap, this paper presents a novel day-ahead hybrid forecasting framework for photovoltaic applications. This framework integrates a physics-based model with Machine Learning (ML) techniques, enhancing prediction reliability in environments with scarce data. Additionally, an innovative ML pipeline is introduced for data-abundant environments. The proposed ML tool comprises two branches: a set of regressors, each tailored for specific weather conditions, and a self-attention-based encoder-decoder network. By fusing the outputs from these branches through a meta-learner, the tool achieves predictions of higher quality, as evidenced by its superior performance over benchmark models in an investigated test dataset.
S

SunView 深度解读

该混合预测框架对阳光电源iSolarCloud智能运维平台及SG系列光伏逆变器具有重要应用价值。日前功率预测可直接集成至智能诊断系统,优化MPPT算法的前瞻性调度策略。针对ST系列储能变流器,精准的24小时功率预测能显著提升储能系统充放电策略优化,降低电网波动冲击。LightGBM与自注意力网络的双分支架构适用于不同气象条件下的功率预测,可增强PowerTitan大型储能系统的能量管理系统(EMS)决策能力。物理模型与机器学习融合的思路为阳光电源在数据稀缺的新建电站场景提供了可靠的预测性维护方案,支撑构网型GFM控制的前馈补偿策略优化。