← 返回
光伏发电技术 储能系统 可靠性分析 机器学习 ★ 5.0

基于计算智能的无人机集成光伏模块在结冰条件下的建模

Computational Intelligence-Based Modeling of a UAV-Integrated PV Module in Icing Conditions

作者 MohammadHosein Saeedinia · Shamsodin Taheri · Ana-Maria Cretu
期刊 IEEE Journal of Photovoltaics
出版日期 2025年9月
技术分类 光伏发电技术
技术标签 储能系统 可靠性分析 机器学习
相关度评分 ★★★★★ 5.0 / 5.0
关键词 太阳能无人机 飞行结冰 光伏模块 建模方法 性能预测
语言:

中文摘要

太阳能无人机通过利用太阳能延长续航能力并降低维护成本,但飞行中结冰会显著影响其气动性能及光伏系统的运行可靠性。机翼结冰削弱机械性能,而光伏表面结冰则阻碍光照,导致输出参数下降,尤其是非均匀遮挡危害更大。本文提出一种新型建模方法,将非均匀结冰影响纳入辐照度计算,通过分析冰层对光伏方程的影响,将光伏工作曲线划分为结冰与正常两个区域,并采用先进计算智能方法确定参数。结合最小冗余最大相关性技术,利用训练的机器学习模型预测动态恶劣条件下光伏性能,实验验证了该方法的有效性与可靠性。

English Abstract

Solar UAVs utilize solar energy to extend flight endurance and reduce maintenance compared to traditional UAVs. However, in-flight icing presents significant challenges, impacting both aerodynamic performance and the operational reliability of UAV-integrated photovoltaic (PV) systems. Ice accumulation on wings degrades mechanical properties, while icing on PV modules obstructs sunlight, adversely affecting their parameters. Partial shading from ice is more harmful than uniform shading, complicating PV module behavior analysis. This study presents a novel approach to model the behavior of UAV-integrated PV modules incorporating the impact of nonuniform in-flight icing into irradiance calculations. By analyzing how ice formation acts as an obstacle and considering its effect on the PV module governing equations, this research develops a computational framework alongside with segmenting the PV module's operational curve into two zones: ice-covered and normal. The parameters for these zones are determined using advanced computational intelligence methods. The proposed method enables predictions of PV module performance using trained machine learning models, enhanced by the minimum redundancy maximum relevance technique, under dynamic and adverse conditions such as movement-induced sunlight variations and partial shading. The trained models’ performance is validated through experimental tests, demonstrating the reliability and effectiveness of the approach.
S

SunView 深度解读

该研究针对极端结冰环境下光伏组件性能建模,对阳光电源高纬度及高海拔地区部署的SG系列光伏逆变器具有重要参考价值。非均匀结冰导致的局部遮挡与热斑效应,可直接应用于优化MPPT算法,提升极端工况下的功率跟踪精度。基于机器学习的动态性能预测方法,可集成至iSolarCloud智能运维平台,实现结冰风险预警与预测性维护。该建模思路亦可拓展至PowerTitan储能系统的温度管理策略,通过计算智能方法优化低温环境下的电池热管理与功率调度,提升系统在寒冷地区的运行可靠性与能量利用效率。