← 返回
光伏发电技术 储能系统 DAB 机器学习 ★ 5.0

基于机器学习驱动的多目标方法优化CPV系统针翅片散热器设计

Optimisation of pin-fin heat sink design for CPV systems using machine learning-driven multi-objective approaches

作者 Javad Mohammadpour · Danah Ruth Cahanap · Danish Ansari · Christophe Duwig · Fatemeh Salehi
期刊 Energy Conversion and Management
出版日期 2025年1月
卷/期 第 340 卷
技术分类 光伏发电技术
技术标签 储能系统 DAB 机器学习
相关度评分 ★★★★★ 5.0 / 5.0
关键词 CatBoost shows the highest accuracy with R2 = 0.978 and RMSE = 0.114.
语言:

中文摘要

摘要:聚光光伏(CPV)系统因其高效率和紧凑的设计,能够支持绿色氢气生产,并有助于实现联合国可持续发展目标7(经济适用的清洁能源)。然而,若热管理不当,其性能和使用寿命会受到显著影响。为应对这一挑战,本研究提出了一种数据驱动的框架,可在提升CPV系统热性能优化效果的同时,降低对计算密集型仿真的依赖。本文评估了一种新型变高度针翅片散热器,旨在最小化最高温升、温度不均匀性以及压降。研究评估了五种基于树结构的机器学习(ML)模型,包括决策树、随机森林、梯度提升、XGBoost和CatBoost,其中CatBoost表现出最高的预测精度。该模型被用作高保真仿真的替代模型,结合非支配排序遗传算法III(NSGA-III)实现高效的多目标优化。为了从帕累托最优解集中识别出最均衡的配置方案,采用了六种多准则决策模型(MCDM)。结果表明,在所采用的六种MCDM模型中,PROBID和PROMETHEE II能够有效平衡相互冲突的优化目标,所得最优配置相较于传统的等高设计,使温度不均匀性降低了70.48%,压降降低了41.84%。与高保真仿真结果的对比验证表明,机器学习模型的预测具有高度准确性,误差范围在0至0.063%之间。这种集成化的基于代理模型的方法,为优化CPV系统及其他高密度热管理应用提供了成本与时间上均具优势的解决方案。

English Abstract

Abstract Concentrated photovoltaic (CPV) systems, with their high efficiency and compact design, support green hydrogen production and contribute to United NationsSustainable Development Goal 7 (Affordable and Clean Energy). However, their performance and longevity can be significantly compromised by inadequate thermal management. To address this challenge, this study proposes a data-driven framework that enhances CPV thermal optimisation while reducing reliance on computationally intensive simulations. A novel variable pin–fin height heat sink is evaluated with the aim of minimising maximum temperature rise, temperature non-uniformity, and pressure drop. Five tree-based machine learning (ML) models, including Decision Tree, Random Forest, Gradient Boosting, XGBoost, and CatBoost, are assessed, with CatBoost demonstrating the highest predictive accuracy. This model is used as a surrogate for high-fidelity simulations, enabling efficient multi-objective optimisation using the Non-dominated Sorting Genetic Algorithm III (NSGA-III). To identify the most balanced configuration among the Pareto-optimal solutions, six multi-criteria decision-making (MCDM) models are applied. Results indicate that PROBID and PROMETHEE II, among the six MCDM models, effectively balance the competing objectives, producing a configuration that reduces temperature non-uniformity by 70.48 % and pressure drop by 41.84 % compared to a conventional uniform design. Validation against high-fidelity simulations confirms the accuracy of ML predictions, with an error margin between 0 and 0.063 %. This integrated surrogate-based approach offers a cost- and time-efficient solution for optimising CPV systems and other high-density thermal applications.
S

SunView 深度解读

该CPV热管理优化技术对阳光电源高功率密度产品具有重要借鉴价值。研究中采用的机器学习驱动多目标优化方法可应用于ST系列储能变流器和SG系列大功率逆变器的散热设计优化,通过CatBoost等算法替代传统CFD仿真,显著降低热设计迭代成本。变高度翅片散热器设计理念可用于PowerTitan储能系统功率模块热管理,实现温度均匀性提升70%的同时降低风阻。该数据驱动框架与iSolarCloud平台结合,可支持SiC/GaN功率器件的热应力预测性维护,提升系统可靠性和全生命周期效益。