← 返回
部分遮阴下最优功率采集:基于二进制灰雁优化的光伏阵列重构与基于机器学习的故障诊断
Optimal power harvesting under partial shading: Binary Greylag Goose optimization for reconfiguration and Machine learning-Based fault diagnosis in solar PV arrays
| 作者 | S.Saravanan · R. Senthil Kumar · P.Balakumar · N. Prabaharan |
| 期刊 | Energy Conversion and Management |
| 出版日期 | 2025年1月 |
| 卷/期 | 第 333 卷 |
| 技术分类 | 光伏发电技术 |
| 技术标签 | 储能系统 机器学习 故障诊断 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | 光伏系统 电网 传统能源 部分遮挡 发电效率 |
语言:
中文摘要
摘要 光伏(PV)系统已成为向电网提供能量采集支持的主要来源,作为传统能源的可持续替代方案。然而,部分遮阴对光伏系统的影响会降低基于光伏的发电效率。光伏阵列重构方法是减轻部分遮阴效应影响的最佳实践之一。本文提出了一种新的光伏阵列重构方法,采用二进制灰雁优化(Binary Greylag Goose Optimization, BGGO)算法。为验证所提BGGO方法的有效性,研究采用一个9x9面板的光伏阵列,并考虑六种阴影分布模式——右下角、右上角、左下角、左上角、中心以及对角线遮阴。在总交叉连接(TCT)结构中,该方法在左上角阴影模式下实现了比原有配置高14%的全局最大功率(GMP),在右上角模式下提高13%,在对角线模式下提高7%。与TCT(5462 W)、改进数独(Modified Suduko, 5822 W)、多目标灰狼优化器(Multi-Objective Gray Wolf Optimizer, 5850 W)和二进制萤火虫算法(Binary Firefly Algorithm, 5801 W)相比,所提方法在最大输出功率达到5990 W时表现出最高的填充因子和最小的功率损耗。所提出的BGGO技术相较于TCT结构及其他方法可多产生10%的电能,这一结果通过能量预测和收益生成得到了验证。此外,本文还采用了基于朴素贝叶斯的机器学习(ML)方法来检测并分类光伏面板的性能退化情况。为了验证所提机器学习方法的性能,还在存在故障和无故障两种条件下对其他策略进行了对比分析。所得结果证实了所提出的BGGO结合机器学习方法在重构遮阴阵列方面的优越性和有效性,能够实现最优配置。
English Abstract
Abstract Photovoltaic (PV) systems have become a major source of energy harvesting assistance to electric grids, serving as a sustainable substitute for conventional energy sources. However, the effect of partial shading on PV reduces the effectiveness of PV-based electricity. The PV array reconfiguration approach is one of the best practices for lessening the influence of the partial shading effect. This article proposes a new PV array reconfiguration process using a Binary Greylag Goose Optimization (BGGO) approach. A 9x9 panel PV array with six shadow configurations for arrays − bottom right, top right, bottom left, top left, centre, and diagonal shading is considered to validate the effectiveness of the proposed BGGO. The proposed method achieves optimal global maximum power (GMP) in Total Cross Tied (TCT) arrangements by 14 % in the shadow pattern on the top left, 13 % in the arrangement on the top right, and 7 % in the diagonal patterns. The proposed method provides the highest fill factor and the least power loss at a maximum output of 5990 W as compared with TCT (5462 W), Modified Suduko (5822 W), Multi-Objective Gray Wolf Optimizer (5850 W) and Binary Firefly Algorithm (5801 W). The proposed BGGO technique produces 10 % more power than the TCT arrangement and other approaches, confirmed by the energy predictions and revenue generation. The Nave Bayes-based Machine Learning (ML) approach is also utilized to detect and categorize PV panel degradation. Other strategies are examined under both faulty and non-faulty to verify the performance of the proposed ML approach. The obtained results validate the proposed BGGO with ML’s superiority and capacity to reconfigure the shaded array to be optimal.
S
SunView 深度解读
该二进制灰雁优化算法结合机器学习的阴影应对方案,对阳光电源SG系列光伏逆变器的MPPT优化技术具有重要参考价值。研究验证在复杂遮挡场景下通过阵列重构可提升10-14%发电效率,可与我司iSolarCloud平台的预测性维护功能深度融合,实现智能故障诊断与动态拓扑优化。该方法论可应用于ST储能系统的能量管理策略,通过机器学习预测光伏出力波动,优化充放电决策,提升系统整体经济性与可靠性。