← 返回
光伏发电技术 储能系统 可靠性分析 故障诊断 ★ 5.0

基于智能暂态分析的不确定并网光伏系统可靠性与安全性提升

Enhancing reliability and safety of uncertain grid-connected photovoltaic systems based on intelligent transient regime analysis

语言:

中文摘要

摘要 确保并网光伏(GCPV)系统的持续运行至关重要,因为这些系统极易受到多种因素引起的故障和停机影响,可能导致严重的系统损坏。为应对这些挑战,故障检测与诊断(FDD)方法对于维持GCPV系统的可靠性与安全性必不可少。本文提出一种基于暂态过程的FDD方法,用于不确定的GCPV系统,采用深度学习技术实现故障的有效检测与分类。此外,该方法利用可再生能源系统中健康状态与故障状态之间的过渡阶段,通过识别性能信号中的异常,实现早期故障检测。通过将暂态过程分析与深度学习技术相结合,该方法能够快速而准确地检测故障,从而提高光伏系统的可靠性并延长其使用寿命。为处理测量数据中的不确定性,采用了区间值数据表示方法,确保在不同工况下进行鲁棒的故障分析。同时,利用遗传算法对所提方法的超参数进行优化,提高了其在多样化运行场景下的适应能力。为进一步验证该方法的鲁棒性,研究中向数据引入不同程度的噪声,以模拟实际环境中的扰动和动态变化。处理后的输出数据用于训练深度学习分类器,以区分GCPV系统的各种运行模式。基于真实世界数据的实验验证表明,所提方法具有良好的有效性与鲁棒性,能够支持即时决策并防止故障蔓延。结果表明该策略具有高检测精度和计算效率,有助于提升GCPV系统的可靠性与安全性。

English Abstract

Abstract Ensuring the uninterrupted operation of Grid-Connected Photovoltaic (GCPV) systems is crucial, as these systems are highly susceptible to faults and downtime caused by various factors, which can lead to significant system damage. To address these challenges, fault detection and diagnosis (FDD) methods are essential to maintain the reliability and safety of GCPV systems. This paper presents a transient regime based on the FDD approach of uncertain GCPV systems, employing deep learning techniques to detect and classify faults effectively. Furthermore, the proposed method takes advantage of the transition phase between healthy and faulty states in renewable energy systems to enable early fault detection by identifying anomalies in performance signals. By combining transient regime analysis with deep learning techniques, the approach facilitates rapid and accurate fault detection, thereby enhancing the reliability and extending the lifespan of photovoltaic systems . To handle uncertainties in the measured data, an interval-valued data representation is utilized, ensuring robust fault analysis under varying conditions. However, the hyperparameters of the proposed techniques are optimized using the Genetic Algorithm , improving their adaptability to diverse operating scenarios. The robustness of the methodology is further validated by introducing varying levels of noise into the data, simulating real-world perturbations and dynamic variations. The processed outputs are used to train deep learning classifiers to distinguish between various operating modes in GCPV systems. Experimental validation with real-world data demonstrates the efficacy and robustness of the proposed approach, enabling immediate decision-making and preventing fault propagation . The results highlight the strategy’s high accuracy and computational efficiency, contributing to improved reliability and safety of GCPV systems.
S

SunView 深度解读

该瞬态故障诊断技术对阳光电源SG系列光伏逆变器及ST储能变流器具有重要应用价值。通过深度学习捕捉健康-故障转换期的异常信号,可实现早期故障预警,显著提升系统可靠性。建议将区间值数据处理与遗传算法优化集成至iSolarCloud平台,增强预测性维护能力。该方法对1500V高压系统及PowerTitan储能方案的安全防护尤为关键,可有效防止故障扩散,延长设备寿命,降低运维成本。技术路线与公司智能运维战略高度契合。