← 返回
光伏发电技术 储能系统 可靠性分析 故障诊断 ★ 5.0

面向光伏系统中人工智能驱动的预测性维护与故障诊断的多阶段审查框架

A multi-stage review framework for AI-driven predictive maintenance and fault diagnosis in photovoltaic systems

语言:

中文摘要

摘要 光伏(PV)行业面临诸多挑战,包括高昂的初始成本、对天气条件的依赖性、易发生故障、电网运行不稳定性以及组件性能退化等问题。预测性维护(PdM)旨在主动识别潜在问题,从而提高系统的可靠性与运行效率,但若缺乏进一步的诊断措施,可能无法提供具体的故障信息。本研究提出了一种先进的预测性维护与故障诊断集成框架,该框架融合了故障模式分析、故障严重程度评估以及关键故障预测功能,旨在通过识别和分析特定的故障模式来提升光伏系统的运行效能,减少停机时间并增强系统可靠性。因此,本文对当前应用于光伏系统中预测性维护与故障诊断的人工智能(AI)方法进行了系统的批判性综述。此外,本研究强调了数据标准化的重要性,并提出了若干建议,阐明预测性维护与故障诊断相结合时,如何利用多种数据源提前预测故障、评估其严重程度,并优化系统性能与维护策略。据作者所知,目前尚无类似的研究综述存在。

English Abstract

Abstract The photovoltaic (PV) sector encounters challenges such as high initial costs, reliance on weather, susceptibility to faults, irregularities in the grid, and degradation of components. Predictive maintenance (PdM) aims to proactively identify issues, thereby enhancing reliability and efficiency but may lack specific fault details without additional diagnostic efforts. This research presents an advanced PdM and fault diagnosis framework that integrates fault pattern analysis, severity assessments, and critical fault predictions. It aims to improve the functionality of PV systems, minimize downtime, and enhance reliability by identifying and analyzing specific fault patterns. Consequently, our article provides a critical review of current Artificial Intelligence (AI) methodologies for PdM and fault diagnosis in PV systems. Moreover, this study highlights the significance of data standardization and offers recommendations on how PdM, when combined with fault diagnosis, can utilize various data sources to anticipate faults in advance, assess their severity, and optimize system performance and maintenance activities. To the best of the authors’ knowledge, no such review study exists.
S

SunView 深度解读

该AI驱动的预测性维护与故障诊断框架对阳光电源SG系列光伏逆变器及ST储能系统具有重要应用价值。通过集成故障模式识别、严重性评估和关键故障预测,可显著提升iSolarCloud平台的智能运维能力。建议将多阶段诊断框架融入MPPT优化算法,实现组件级故障预警;结合PowerTitan储能系统的数据标准化需求,构建PV-ESS联合健康管理体系,降低系统停机时间,延长SiC/GaN功率器件使用寿命,为1500V高压系统提供主动式可靠性保障。