← 返回
光伏发电技术 储能系统 SiC器件 机器学习 ★ 5.0

物理引导的机器学习利用稀疏、异构的公开数据预测全球太阳能电站性能

Physics-guided machine learning predicts the planet-scale performance of solar farms with sparse, heterogeneous, public data

作者 Jabir Bin Jahangi · Muhammad Ashraful Alam
期刊 Applied Energy
出版日期 2025年1月
卷/期 第 396 卷
技术分类 光伏发电技术
技术标签 储能系统 SiC器件 机器学习
相关度评分 ★★★★★ 5.0 / 5.0
关键词 Introduces a data-efficient physics-guided machine learning approach for solar farms.
语言:

中文摘要

摘要 光伏(PV)技术格局正在迅速演变。为了预测新兴光伏技术的潜力和可扩展性,必须对这些系统在全球范围内的性能有全面的理解。传统上,大型国家级研究机构的实验和计算研究主要关注特定区域气候条件下的光伏性能。然而,将这些区域性研究结果综合起来以理解其全球性能潜力已被证明十分困难。鉴于获取实验数据的成本高昂,在政治分裂的世界中协调各国国家实验室开展实验存在挑战,以及大型商业运营商的数据隐私顾虑,人们迫切需要一种根本不同且数据效率更高的方法。本文提出了一种面向光伏的物理引导机器学习(PGML)方法,证明了以下两点:(a)全球可划分为若干个特定于光伏的气候区,称为PVZones,表明相关气象条件在各大洲之间具有共性;(b)通过利用气候相似性,仅需来自最少五个地点的高质量月度发电量数据,即可高空间分辨率地准确预测全球年度发电潜力(均方根误差小于8 kWh m⁻²)。此外,通过对噪声大、异构性的公开光伏性能数据进行同质化处理,在数据集具有代表性的前提下,该方法预测的全球发电量与基于物理模型模拟结果相比,相对误差低于6%。这种新颖的、数据高效的PGML方案不依赖于具体的光伏技术和电站拓扑结构,因而能够无缝适应不断涌现的新光伏技术和电站配置。本研究成果为各国政策制定者与科研机构之间开展基于物理规律、数据驱动的合作铺平了道路,有助于开发高效的决策支持系统,加速全球范围内光伏技术的部署。

English Abstract

Abstract The photovoltaics (PV) technology landscape is evolving rapidly. To predict the potential and scalability of emerging PV technologies, a global understanding of these systems’ performance is essential. Traditionally, experimental and computational studies at large national research facilities have focused on PV performance in specific regional climates. However, synthesizing these regional studies to understand the worldwide performance potential has proven difficult. Given the expense of obtaining experimental data, the challenge of coordinating experiments at national labs across a politically divided world, and the data privacy concerns of large commercial operators, a fundamentally different, data-efficient approach is desired. Here, we introduce a physics-guided machine learning (PGML) approach for PV to demonstrate that: (a) the world can be divided into a few PV-specific climate zones, called PVZones, illustrating that the relevant meteorological conditions are shared across continents; (b) by exploiting the climatic similarities, high-quality monthly energy yield data from as few as five locations can accurately predict (with a root mean square error of less than 8 kWh m − 2 ) global yearly energy yield potential at high spatial resolution . Moreover, by homogenizing noisy, heterogeneous public PV performance data, the global energy yield can be predicted with less than 6 % relative error compared to physics-based simulations, provided that the dataset is representative. This novel data-efficient PGML scheme for PV is independent of both PV technology and farm topology, allowing it to adapt seamlessly to emerging PV technologies and farm configurations. The results pave the way for physics-guided, data-driven collaboration between national policymakers and research organizations in developing efficient decision support systems to accelerate PV deployment worldwide.
S

SunView 深度解读

该物理引导机器学习方法对阳光电源全球化布局具有重要价值。通过PVZones气候分区和稀疏数据预测全球光伏性能,可优化SG系列逆变器的区域适配策略和MPPT算法参数。结合iSolarCloud平台,该技术能以少量站点数据预测不同气候区的发电潜力,指导ST储能系统容量配置,降低新市场前期勘测成本。数据高效特性契合阳光电源快速拓展新兴市场需求,为逆变器和储能产品的全球部署提供科学决策支持,加速国际市场渗透。