← 返回
光伏发电技术 储能系统 SiC器件 ★ 5.0

从集合数值天气预报生成确定性光伏功率预测的复杂性与维度问题

The complexity and dimensionality of making deterministic photovoltaic power forecasts from ensemble numerical weather prediction

作者 Martin János Mayer · Dazhi Yangb · Dávid Markovics
期刊 Energy Conversion and Management
出版日期 2025年1月
卷/期 第 344 卷
技术分类 光伏发电技术
技术标签 储能系统 SiC器件
相关度评分 ★★★★★ 5.0 / 5.0
关键词 Leveraging ensemble NWP can improve deterministic PV forecasting accuracy by 5%
语言:

中文摘要

摘要:集合数值天气预报(NWP)是一种生成天气预报并量化其不确定性的基本且可靠的方法。然而,将集合太阳辐照度预报转换为确定性光伏(PV)功率预报的过程涉及两个具有挑战性的特征,即复杂性和维度性。复杂性源于必须引入物理模型链和后处理工具,这两者均需要对能源气象学有深入的理解。而维度性则是因为可以自由地将各种模型链与后处理工具进行级联组合,每种工具都有多种可选方案,从而形成16种不同的转换工作流程,导致可能性成倍增加。当以某种方式引入机器学习时,情况变得更加复杂。本研究利用匈牙利五个大型公用事业级光伏电站四年的观测数据以及欧洲中期天气预报中心提供的集合NWP预报数据,实证评估了从集合NWP生成确定性PV功率预报的最优工作流程。研究发现:(1)相比仅使用确定性NWP,采用集合NWP可使预报误差降低5%;(2)在整個工作流程中,对最终的PV功率预报进行偏差校正是唯一不可或缺的步骤,这表明只要最终目标是预测PV功率,则对辐照度预报进行后处理实际上并非必要。

English Abstract

Abstract Ensemble numerical weather prediction (NWP) constitutes a fundamental and reliable way of creating weather forecasts and quantifying their uncertainty. However, converting ensemble solar irradiance forecasts to deterministic photovoltaic (PV) power forecasts is associated with two challenging characteristics, that is, complexity and dimensionality. Complexity is introduced because of the necessary involvement of physical model chains and post-processing tools, both of which require in-depth knowledge of energy meteorology. Dimensionality, on the other hand, arises because one can freely cascade model chains and post-processing tools, each having many alternatives, into 16 distinct conversion workflows, in that, the possibilities multiply. When machine learning is involved, in one way or another, the situation becomes more convoluted. This work provides empirical evidence on the optimal workflow of making deterministic PV power forecasts from ensemble NWP, using four-year data from five utility-scale PV plants in Hungary alongside ensemble NWP forecasts from the European Centre of Medium-Range Weather Forecasts. It is found that (1) using ensemble NWP results in a 5% error reduction over just using deterministic NWP, and (2) bias-correcting the final PV power forecasts is the only indispensable stage of the workflow, which suggests that post-processing irradiance forecasts is not really needed, insofar as the final goal is to forecast PV power.
S

SunView 深度解读

该研究对阳光电源iSolarCloud智慧运维平台及SG系列逆变器功率预测算法具有重要指导意义。核心发现表明:集合NWP相比确定性预测可降低5%误差,且仅需对最终功率输出进行偏差校正,无需对辐照度预测做复杂后处理。这为简化预测模型链、优化ST储能系统充放电策略提供依据。建议在iSolarCloud平台集成轻量化集合预测模块,直接校正逆变器输出功率,提升百兆瓦级电站AGC响应精度,同时为PowerTitan储能系统提供更可靠的日前调度依据,降低预测偏差导致的考核成本。