← 返回
光伏发电技术 储能系统 SiC器件 ★ 5.0

高效的光伏发电预测以实现中国碳中和

Efficient photovoltaic power prediction to achieve carbon neutrality in China

作者 Junyao Gao · Weiqing Huang · Yu Qian
期刊 Energy Conversion and Management
出版日期 2025年1月
卷/期 第 329 卷
技术分类 光伏发电技术
技术标签 储能系统 SiC器件
相关度评分 ★★★★★ 5.0 / 5.0
关键词 First coupling Delta and Bayesian Model Averaging models for error correction.
语言:

中文摘要

摘要 合理利用光伏发电是中国实现碳减排的关键途径。然而,许多基于气候数据的物理预测方法尚未充分考虑全球气候模型(GCMs)在不同区域中存在的显著差异和数据偏差。为解决这一问题,本文提出了一种基于近地面气温和太阳辐射的新型光伏发电功率预测框架。同时提出一种区域划分与时段分段相结合的改进Delta方法,并结合贝叶斯模型平均(BMA)技术,显著降低气候数据的模拟误差。综合考虑光伏电池转换效率及四种共享社会经济路径,以实现高效的光伏发电潜力预测。本文对近六百万条气候数据进行了定量分析,验证了该方法具有较强的适用性。地表向下短波辐射和近地面气温的相关系数分别提高了11.44%和2.07%,均方根误差分别降低了53.86%和56.21%。预测结果表明,在2030–2059年和2060–2099年期间,中国在可持续发展路径下更有利于光伏发电,光伏发电潜力平均值可分别达到110.86 W m⁻²和168.51 W m⁻²,相应带来的碳排放减少量分别为0.968 t m⁻² yr⁻¹和1.472 t m⁻² yr⁻¹。若中国的光伏装机面积达到15,000 km²且光伏电池转换效率提升至50%,则可在2044–2059年间实现碳中和。本研究为中国高效光伏发电预测和能源政策制定提供了理论依据,同时也为其他具有类似需求的国家提供了方法论支持。

English Abstract

Abstract Rational utilization of photovoltaic (PV) power generation is a key pathway for China to achieve carbon reduction. However, many physics-based prediction methods using climate data have not fully accounted for the significant discrepancies and data biases in Global Climate Models (GCMs) across different regions. To address this issue, a novel PV power prediction framework based on near-surface air temperature and solar radiation is proposed. A region-divided and period-segmented improved Delta method is also proposed to significantly reduce the simulation errors of climate data by coupling with Bayesian Model Averaging (BMA). The conversion efficiency of PV cell and four Sharing Socioeconomic Pathways are considered collaboratively for efficient PV power potential prediction. Nearly six million climate data volumes were quantitatively analyzed, demonstrating the strong applicability of this approach. The relevance coefficients for surface downwelling shortwave radiation and near-surface air temperature increased by 11.44 % and 2.07 %, while the root mean square errors decreased by 53.86 % and 56.21 %. The prediction results show that China is more favorable to PV power generation under the sustainable development path during 2030–2059 and 2060–2099, the average value of PV power potential can reach to 110.86 W m −2 and 168.51 W m −2 , leading to carbon emission reductions of 0.968 t m −2 yr −1 and 1.472 t m −2 yr −1 . If China’s installed PV capacity reaches 15,000 km2 and PV cell conversion efficiency rises to 50 %, carbon neutrality could be realized during 2044–2059. This study provides a theoretical basis for efficient PV power prediction and energy policy formulation in China, while also offering a methodological support for other countries with similar demand.
S

SunView 深度解读

该研究提出的光伏功率预测框架对阳光电源SG系列逆变器和iSolarCloud平台具有重要应用价值。通过改进Delta方法和贝叶斯模型平均耦合,可显著提升气象数据精度(辐照度误差降低53.86%),为逆变器MPPT优化算法提供更准确的预测输入。研究预测2060-2099年中国光伏潜力可达168.51 W/m²,结合50%转换效率目标,验证了阳光电源SiC器件技术路线的战略正确性。该方法可集成至iSolarCloud智能运维平台,实现电站级功率预测和碳减排量化评估,支撑ST储能系统的充放电策略优化,助力双碳目标实现。