← 返回
一种新型光伏-热电-界面蒸发多物理场耦合系统的建模与性能评估
Modeling and performance evaluation of a new multi-physical coupled system of photovoltaic-thermoelectric-interfacial evaporation
| 作者 | Yunfeng Qiua · Meixiang Zhang · Yahui Wanga · Xiao Guob · Zhiguo Shia · Haibo Wangc · Xiang Yua |
| 期刊 | Energy Conversion and Management |
| 出版日期 | 2025年1月 |
| 卷/期 | 第 333 卷 |
| 技术分类 | 光伏发电技术 |
| 技术标签 | 储能系统 SiC器件 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | A new a coupled photo-electric-thermal-interfacial evaporation model is developed. |
语言:
中文摘要
摘要 界面蒸发作为一种新兴的海水淡化技术,将其与光伏发电技术相结合,并利用光伏废热驱动界面蒸发,是解决离网岛屿地区水电短缺问题的有效措施。为了降低前期实验成本,有必要对不同耦合形式的太阳能利用系统进行准确计算。本文基于光电转换模型、传热模型、热电转换模型以及界面蒸发模型,建立了光电-热-界面蒸发耦合模型,用于计算太阳辐照度、环境温度和环境风速等气象参数对光伏-界面蒸发耦合系统及光伏-热电-界面蒸发耦合系统输出性能的影响,并通过实验研究验证了模型的可靠性。结果表明,该模型对光伏组件输出功率的平均模拟误差为3.97%,对光伏表面温度的误差为2.29%,对热电发电机输出功率的误差为6.11%,对蒸发量的误差为8.77%。在相同条件下,光伏-界面蒸发耦合系统的净太阳能发电效率低于光伏-热电-界面蒸发耦合系统,但具有更高的太阳能利用率和界面蒸发速率。随着光伏表面发射率的增加,系统的净太阳能发电效率上升,但界面蒸发速率和太阳能利用率先下降。随着光伏组件输出电压的升高,系统的净太阳能发电效率和太阳能利用率呈现先升高后降低的趋势,而系统的界面蒸发速率则表现为先降低后升高的变化趋势。
English Abstract
Abstract Interfacial evaporation, as an emerging seawater desalination technology, combines it with photovoltaic power generation technology and utilizes photovoltaic waste heat to drive interfacial evaporation, which is an effective measure for solving the problem of water and electricity shortage in off-grid island areas. Accurate calculations for different coupled forms of solar energy utilization systems are necessary to reduce the cost of preliminary experiments. In this paper, a coupled photo-electric-thermal-interfacial evaporation model is established based on photoelectric conversion model, heat transfer model, thermoelectric conversion model, and interfacial evaporation model, which is used to calculate the effects of meteorological parameters such as solar irradiance, ambient temperature, and ambient wind speed on the output performance of photovoltaic-interfacial evaporation and photovoltaic-thermoelectric-interfacial evaporation coupled systems, and experimental studies are carried out to validate the reliability of the model. The results show that the model has an average simulation error of 3.97 % for Photovoltaic module output power, 2.29 % for photovoltaic surface temperature, 6.11 % for thermoelectric generator output power, and 8.77 % for evaporation. Under the same conditions, the coupled photovoltaic-interfacial evaporation system has a lower net solar power generation efficiency than the coupled photovoltaic-thermoelectric-interfacial evaporation system but has a higher solar energy utilization and interfacial evaporation rate. As the emissivity of the photovoltaic surface increases, the net solar power generation efficiency of the system rises, but the interfacial evaporation rate and the utilization rate of solar energy of the system decrease. With the increase of output voltage of photovoltaic module, the net solar power generation efficiency and solar energy utilization rate of the system exhibit a trend of first increasing and then decreasing, while the interface evaporation rate of the system shows the change trend of first decreasing and then increasing.
S
SunView 深度解读
该光伏-热电-界面蒸发耦合系统为阳光电源海岛微网解决方案提供创新思路。研究中的光伏废热利用技术可应用于SG系列逆变器热管理优化,通过热电转换提升系统综合效率。模型中光伏表面发射率与输出电压对发电效率的影响规律,可指导ST储能系统在高温海洋环境下的热设计改进。该多物理场耦合建模方法对iSolarCloud平台的预测性维护算法开发具有参考价值,特别是在离网场景下实现水电联供的智慧能源管理,契合阳光电源综合能源解决方案战略方向。