← 返回
光伏发电技术 储能系统 地面光伏电站 机器学习 ★ 5.0

基于机器学习方法的大型光伏电站选址潜力空间评估:以日本爱知县为例

Spatial assessment of utility-scale solar photovoltaic siting potential using machine learning approaches: A case study in Aichi prefecture, Japan

作者 Linwei Taoa · Kiichiro Hayashi · Sangay Gyeltshen · Yuya Shimoyam
期刊 Applied Energy
出版日期 2025年1月
卷/期 第 383 卷
技术分类 光伏发电技术
技术标签 储能系统 地面光伏电站 机器学习
相关度评分 ★★★★★ 5.0 / 5.0
关键词 A machine learning framework is developed for mutual validation of siting potential.
语言:

中文摘要

最优的空间规划对于大型光伏(PV)开发至关重要,有助于实现高效能源利用,并缓解土地利用冲突与环境干扰。传统的多准则决策方法通常存在固有的主观性和较差的可迁移性,而机器学习(ML)技术则为选址潜力评估提供了数据驱动的分析视角。然而,在应对复杂且具有地点特异性的实际情况时,模型预测结果的本地适用性仍是一个挑战。为解决上述问题,本研究提出了一种基于机器学习的比较框架用于选址潜力评估,并整合了分层级的法规限制因素。首先,构建了一个真实世界的数据集,包含数字化的光伏设施位置清单以及来自地形、气候、环境和社会经济等16项选址准则。采用最大熵(MaxEnt)和随机森林模型,通过相互验证的方式评估各准则的影响及选址潜力。通过引入源自地方立法的三级限制区域,对原始模型预测结果进行了优化。两个机器学习模型在测试数据集上均表现出较高的预测精度(AUC > 0.8)。不同准则的重要性呈现显著差异,其中到居民区的距离、年日照时长、坡度、地价以及到保护林的距离始终表现出主导作用,并具有非线性影响特征。此外,整合地方性限制条件提升了模型预测的一致性与可解释性,而MaxEnt模型的输出结果相对更为保守。本研究的发现增强了区域尺度上光伏选址潜力评估的实用性,有助于实现太阳能开发利用中的资源—环境—经济平衡,推动可持续能源转型。

English Abstract

Abstract Optimal spatial planning is crucial for utility-scale photovoltaic (PV) development for efficient energy utilization and the mitigation of land-use conflicts and environmental disruptions. While traditional multi-criteria decision-making approaches often suffer from inherent subjectivity and poor transferability, machine learning (ML) techniques provide data-driven insights into siting potential assessment. However, the localization of model predictions remains a concern when accommodating complex site-specific circumstances. To address these issues, this study proposes an ML-based comparative framework for siting potential assessment while integrating hierarchical regulatory restrictions. Initially, a real-world dataset was established comprising a digitalized inventory of PV locations and sixteen siting criteria from topographic, climatic, environmental, and socioeconomic perspectives. Maximum Entropy (MaxEnt) and random forest models were employed for assessing criteria impact and siting potential through mutual validation. The original model predictions were refined by incorporating three-level restrictive zones retrieved from local legislation. Both ML models showed great predictive accuracy (AUC >0.8) for the test dataset. A varied range of criteria importance was revealed, among which distance to residential areas , annual sunshine duration, slope, land price, and distance to conservation forests showed consistent dominant contributions and nonlinear impacts. Moreover, incorporating local restrictions improved the consistency and interpretability of model predictions, whereas the MaxEnt output exhibited more conservative predictions. Insights from this study enhance the practicability of regional siting potential assessment, contributing to the resource-environment-economy balance for solar energy promotion and facilitating sustainable energy transition.
S

SunView 深度解读

该机器学习选址评估框架对阳光电源地面光伏电站系统集成具有重要应用价值。研究揭示的非线性影响因素(日照时长、坡度、土地价格等)可优化SG系列逆变器配置方案和PowerTitan储能系统部署策略。通过整合地形、气候、环境多维数据,可提升iSolarCloud平台的智能选址功能,实现电站前期规划的数据驱动决策。MaxEnt模型的保守预测特性适合风险评估,助力1500V系统在复杂地形的优化布局,降低土地冲突风险,提高投资回报率。