← 返回
浮体式太阳能发电系统的强化学习基准测试与原型开发:结合棕熊优化算法的实验研究与LSTM建模
Benchmarking reinforcement learning and prototyping development of floating solar power system: Experimental study and LSTM modeling combined with brown-bear optimization algorithm
| 作者 | Mohamed E. Zay · Shafiqur Rehman · Ibrahim A.Elgendy · Ali Al-Shaikhi · Mohamed Ahmed Mohandes · Kashif Irsh · A.S.Abdelrazik · Mohamed Azad Alam |
| 期刊 | Energy Conversion and Management |
| 出版日期 | 2025年1月 |
| 卷/期 | 第 332 卷 |
| 技术分类 | 光伏发电技术 |
| 技术标签 | 储能系统 地面光伏电站 强化学习 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | Experimental comparative study on floating and ground-based solar [PV](https://www.sciencedirect.com/topics/engineering/photovoltaics "Learn more about PV from ScienceDirect's AI-generated Topic Pages") systems is investigated. |
语言:
中文摘要
摘要 本研究对浮体式太阳能光伏(SFPV)系统与地面安装式太阳能光伏(GSPV)系统进行了全面的对比性实验研究、性能评估分析以及增强型人工智能(AI)建模。两种系统——SFPV与GSPV——均在沙特阿拉伯阿尔-霍巴尔巴林湾地区相同的严苛环境条件下安装、测试并进行比较,详细评估了电功率输出、光伏组件表面温度、光伏直流电压与电流,以及能量产出和效率。此外,本研究还构建了一种混合人工智能框架,该框架融合了轻量梯度提升机(LightGBM)、门控循环单元(GRU)和长短期记忆网络(LSTM)模型,并通过一种创新的棕熊优化算法(BBOA)对其进行参数优化,以预测SFPV和GSPV系统的发电功率及光伏组件表面温度。实验结果表明,相较于GSPV系统,SFPV系统使平均光伏电功率和日累计净电能分别提升了59.25%和69.70%,同时将光伏组件表面温度降低了32.36%。此外,统计评估结果显示,在所研究的人工智能模型(LGBM-BBOA、GRU、LSTM、LGBM)中,LSTM-BBOA模型在性能预测方面表现出更优的稳健性,其预测SFPV系统电功率和组件表面温度时分别达到了最高的决定系数(R²)值0.9998和0.9999,以及最低的均方根误差(RMSE)值0.5031和0.0007。综上所述,本研究为人工智能技术在提升浮动式太阳能装置与智能电网集成能力及运行效率方面的基准测试提供了有价值的见解,契合可持续能源发展的创新目标。
English Abstract
Abstract This study conducts comprehensive comparative experimental investigation, performance assessment analysis, and enhanced artificial intelligence (AI) modeling of solar floating photovoltaic (SFPV) and ground-mounted solar PV (GSPV) systems. Both systems—SFPV and GSPV—are installed, tested, and compared under identical harsh environmental conditions in Bahrain’s Gulf, in Al-Khobar, Saudi Arabia, with a detailed assessment of electric power output, PV panel surface temperature, PV DC voltage, and current, as well as energy yield and efficiency. More so, a hybrid artificial intelligence framework integrating Light Gradient-Boosting Machine (LightGBM), Gated Recurrent Unit (GRU) and Long Short-Term Memory (LSTM) models, fine-tuned through the utilization of an innovative Brown Bear Optimization Algorithm (BBOA) are also developed to forecast electrical power generation and PV panel surface temperature for both SFPV and GSPV systems. The experiments indicate that the SFPV system improved the average PV electrical power and accumulated net daily electrical energy by 59.25% and 69.70%, as well as reduced the PV panel surface temperature by 32.36% compared to that of the SGPV system, respectively. Moreover, statistical evaluations highlighted the LSTM-BBOA model achieved superior robustness over the investigated AI models (LGBM-BBOA, GRU, LSTM , LGBM) in performance prediction, evidenced by the maximal determination coefficient (R 2 ) of 0.9998 and 0.9999, and the minimal RMSE values of 0.5031 and 0.0007 for predicting the SFPV’s electric power and module surface panel temperature, respectively. Conclusively, the study provides valuable insights into the benchmarking of AI techniques for improving smart-grid integration and operational efficiency of floating solar installations, aligning with the innovation objectives of sustainable energy development.
S
SunView 深度解读
该研究对阳光电源浮式光伏系统集成具有重要价值。SFPV相比地面电站发电量提升59.25%、组件温度降低32.36%,验证了浮式方案的技术优势。LSTM-BBOA混合AI模型(R²达0.9999)可应用于iSolarCloud平台的预测性维护,优化SG系列逆变器的MPPT算法。浮式场景的温度控制特性有助于提升ST储能系统在高温环境的效率。该AI基准测试方法可增强智能运维能力,支撑PowerTitan等产品的智能电网适配性开发。