← 返回
光伏发电技术 SiC器件 深度学习 ★ 5.0

基于动态参数的物理信息神经网络用于短期光伏功率预测:融合物理信息与数据驱动

Dynamic-parameter physics-informed neural networks for short-term photovoltaic power prediction: Integrating physics-informed and data driven

作者 Weiru Wanga · Hanyang Guoa · Shaofeng Liub · Yechun Xina · Guoqing Lia · Yanxu Wanga
期刊 Applied Energy
出版日期 2025年1月
卷/期 第 401 卷
技术分类 光伏发电技术
技术标签 SiC器件 深度学习
相关度评分 ★★★★★ 5.0 / 5.0
关键词 The NBRO-Kmeans++ algorithm improves clustering accuracy compared to Kmeans++.
语言:

中文摘要

为了克服传统混合预测模型中物理约束刚性以及样本不平衡的局限性,本文提出了一种基于动态参数物理信息神经网络(DP-PINN)的新型短期光伏(PV)功率预测框架。基于牛顿-拉夫森优化的K-means++(NBRO-Kmeans++)算法将天气划分为四种类型,与标准K-means++相比,轮廓系数提升了6.6%至45.8%。采用合成少数类过采样技术(SMOTE)对少数类样本进行动态平衡,在该情况下使均方根误差(RMSE)降低了50.5%。物理方程根据天气类型进行动态调整,三重约束损失函数融合了数据拟合、物理导数和方程一致性,并在训练过程中动态调节与天气相关的权重。光电转换效率(η)和温度系数(α)被设为可通过反向传播优化的学习参数。该方法的有效性通过中国一座50 MW光伏电站为期一年的运行数据仿真得到验证。案例分析表明,在极端天气条件下,RMSE比CNN-LSTM模型低50.8%;在晴天条件下,预测精度比纯数据驱动模型提高34.08%;平均RMSE比静态参数PINN(SP-PINN)低25.7%。该方法为具有高波动性的可再生能源预测提供了一种具备更强物理可解释性的通用解决方案。

English Abstract

In order to address the limitations of rigid physical constraints and sample imbalance in traditional hybrid prediction models, this paper proposes a novel short-term photovoltaic (PV) power prediction framework based on dynamic-parameter physical information neural network (DP-PINN). Based on Newton Raphson's optimized K-means++ (NBRO-Kmeans++) algorithm, the weather is classified into four types, and compared with K-means++, the silhouette coefficient is increased by 6.6–45.8 %. The Synthetic Minority Oversampling Technique (SMOTE) is used to dynamically balance minority samples, reducing RMSE by 50.5 % in this case. The physical equations are dynamically adjusted based on weather types, and the triple constraint loss function integrates data fitting, physical derivatives, and equation consistency, and dynamically adjusts the weights related to weather during the training process. The photoelectric conversion efficiency (η) and temperature coefficient (α) are learnable parameters optimized through backpropagation. The effectiveness of this method is verified through one-year operation data simulation of a 50 MW PV power station in China. Case analysis shows that under extreme weather conditions, RMSE is 50.8 % lower than CNN-LSTM, 34.08 % higher on sunny days compared to pure data-driven models, and 25.7 % lower on average RMSE compared to static parameter PINN (SP-PINN). This method provides a universal solution for predicting high volatility renewable energy with enhanced physical interpretability.
S

SunView 深度解读

该DP-PINN动态物理信息神经网络技术对阳光电源iSolarCloud智慧运维平台及SG系列光伏逆变器具有重要应用价值。通过天气分类与SMOTE样本平衡,极端天气下RMSE降低50.8%,可显著提升光伏电站功率预测精度。其动态参数优化机制(光电转化效率η、温度系数α可学习)与阳光电源MPPT优化技术高度契合,能增强逆变器在复杂气象条件下的自适应控制能力。该方法的物理可解释性强化了预测可靠性,可集成至ST系列储能PCS的能量管理系统,实现光储协同优化调度,提升新能源电站整体经济性与电网友好性。