← 返回
光伏发电技术 储能系统 SiC器件 深度学习 ★ 5.0

集成深度学习与图像处理方法用于建模太阳能阵列阴影导致的能量损失

Integrated deep learning and image processing method for modeling energy loss due to shadows in solar arrays

作者 Mohamad T.Araji · Ali Waqas
期刊 Solar Energy
出版日期 2025年1月
卷/期 第 297 卷
技术分类 光伏发电技术
技术标签 储能系统 SiC器件 深度学习
相关度评分 ★★★★★ 5.0 / 5.0
关键词 Shading loss analysis reveals peak losses of 17.67% in April.
语言:

中文摘要

摘要 遮挡对光伏(PV)系统的发电能力构成了严重挑战,可能导致高达40%的能量损失,引发功率失配、热点形成以及组件加速老化。准确地建模与模拟遮挡现象对于提升光伏系统性能至关重要。本研究开发了两种阴影检测流程:(i)结合K均值分割的经典霍夫变换(CHT)方法;(ii)一种新的深度霍夫变换(DHT)方法,该方法能够自主学习语义线条特征,而无需依赖特定于光伏系统的训练数据。实验分析基于一个容量为1千瓦、配备预设遮挡装置的太阳能阵列开展。所提方法在太阳能板检测精度上达到0.85,相较于经典霍夫变换方法提升了32.81%。计算所得的遮挡导致的能量损失与系统顾问模型(SAM)的模拟结果相比,误差范围仅为0.5%至1.9%。在行人、车辆和云层引起的动态阴影场景下进行评估时,平均mIoU达到81.8%,显示出该方法相较于现有基于三维建模的仿真软件具有显著优势。统计分析验证了该方法的一致性,Dice系数为0.857(95%置信区间CI:0.728–0.943),mIoU为0.771(CI:0.595–0.893)。参数化分析表明,一天中的时间与遮挡物数量是影响太阳能阵列遮挡的关键因素,早晨和傍晚时段的遮挡损失变化超过6%。总体而言,这种集成方法实现了鲁棒且实时的建模与仿真能力,有助于优化大规模太阳能能源系统。

English Abstract

Abstract Shading poses a serious challenge to photovoltaic (PV) systems power generation, causing energy losses of up to 40 %, leading to power mismatches, hotspot formation, and accelerated module degradation. Accurate modelling and simulation of shading are critical for improving photovoltaic (PV) performance. This study develops two shadow‑detection pipelines: (i) the Classic Hough Transform (CHT) combined with K‑means segmentation and (ii) a new Deep Hough Transform (DHT) that learns semantic line features without the need for PV‑specific training data. A 1-kilowatt capacity solar array with planned shading devices was developed and used to perform the experimental analysis. The proposed methodology achieved an accuracy of 0.85, indicating a 32.81 % improvement in solar array detection compared to CHT methods. Computed energy losses due to shading were within 0.5 % to 1.9 % of System Advisor Model (SAM’s) simulated losses. Evaluation with transient shadows from a pedestrian, vehicle, and cloud showed an average mIoU of 81.8 % highlighting the methods advantage over existing 3D modeling-based simulation software. Statistical analysis confirmed the method’s consistency, yielding Dice = 0.857 (95 % CI 0.728–0.943) and mIoU = 0.771 (CI 0.595–0.893). The parametric analysis highlighted the time of day and number of obstructions as key factors influencing shading on solar arrays, with mornings and evenings experiencing over 6 % shading loss variations. Overall, this integrated approach develops robust, real-time modelling and simulation for optimizing large solar energy systems.
S

SunView 深度解读

该深度学习阴影检测技术对阳光电源SG系列光伏逆变器和iSolarCloud平台具有重要应用价值。研究揭示阴影可导致40%能量损失,验证了我司MPPT多路优化和组串式逆变器架构的必要性。其实时阴影建模方法(mIoU达81.8%)可集成至iSolarCloud智能运维平台,实现行人、车辆、云层等动态遮挡的预测性诊断,优化发电量评估精度至0.5-1.9%误差范围内。时段参数分析(早晚遮挡损失超6%)可指导储能系统ST系列PCS的充放电策略优化,提升光储协同效率。该技术为大型地面电站的数字孪生仿真提供新思路。