← 返回
基于RGB成像的太阳能光伏故障分类深度学习及预处理技术比较
Deep learning for solar PV fault classification using RGB imaging and comparison of preprocessing techniques
| 作者 | Muthu Eshwaran Ramachandran · Gurukarthik Babu Balachandran · Petchithai Velladurai · Arthy Rajakumar |
| 期刊 | Solar Energy |
| 出版日期 | 2025年1月 |
| 卷/期 | 第 301 卷 |
| 技术分类 | 光伏发电技术 |
| 技术标签 | 储能系统 SiC器件 深度学习 故障诊断 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | Balanced dataset achieved an accuracy of 78.75% compared to 67.24% for unbalanced. |
语言:
中文摘要
摘要:有效检测太阳能光伏(PV)系统中的故障对于确保系统最佳性能和维护至关重要。本研究探讨了不同图像预处理技术对基于深度学习的分类模型准确性的影响,所用的光伏组件RGB图像(包括鸟粪、灰尘、物理/电气损伤、积雪和清洁状态)来自Kaggle数据集。每个像素的R、G、B值捕捉了视觉特征,并通过预处理进一步增强。因此,RGB图像作为卷积神经网络(CNN)分类的原始输入。研究结果表明,仅使用原始RGB图像时,模型准确率仅为85%–89%,但当结合预处理技术(灰度转换+高斯模糊)后,性能显著提升至最高94%。本研究重点关注数据集平衡与不平衡情况下的表现差异,并采用数据增强方法改善类别分布。所构建的CNN模型包含5个卷积层、池化层、展平层、2个全连接层以及Softmax输出层,用于分类六种光伏故障类型。采用80:20的训练-测试划分方式,增强后的平衡数据集(共12,000张图像)取得了78.75%的准确率,高于非平衡数据集的67.24%。该CNN模型在训练集上达到约94%的准确率,在验证集上达到约91%的准确率,显示出在较低计算资源消耗下具有竞争力的性能。此外,为进一步评估预处理方法对模型性能的影响,将五种预处理技术——灰度转换、高斯模糊、Canny边缘检测、阈值分割和直方图均衡化——分别应用于平衡数据集。其中,灰度转换和高斯模糊分别取得了最高的准确率,分别为80.68%和80.42%。这些结果突显了在利用RGB图像进行光伏系统故障检测时,合理选择预处理方法对提升模型性能的重要性。
English Abstract
Abstract Effective fault detection in solar photovoltaic (PV) systems is essential for ensuring optimal performance and maintenance. This study explores how various image preprocessing techniques affect the accuracy of a deep learning-based classification model using RGB images of PV panels (bird droppings, dust, physical/electrical damage, snow, clean) were collected from Kaggle. Each pixel’s R, G, B values capture visual patterns, later enhanced using preprocessing. RGB thus provides the raw input for CNN classification. The work demonstrated that raw RGB images alone yielded only 85–89 % accuracy, but when combined with preprocessing (grayscale conversion + Gaussian blur), performance improved significantly up to 94 %. It mainly focusses on the variations in the balanced and unbalanced dataset where data augmentation was used to improve the class distribution. The CNN model, with 5 convolutional layers, pooling, flattening, 2 dense layers, and a softmax output, classifies six PV fault types. Using an 80:20 train-test split, the augmented balanced dataset (12,000 images) achieved higher accuracy (78.75 %) than the unbalanced one (67.24 %). The CNN achieved training accuracy of ∼ 94 % and validation accuracy of ∼ 91 %, showing competitive performance with fewer computational resources. Further, five preprocessing methods like Grayscale conversion, Gaussian Blur, Canny Edge Detection, Thresholding, and Histogram Equalization were applied to the balanced dataset to assess their impact on model performance. Among these, Grayscale conversion and Gaussian Blur produced the highest accuracies of 80.68 % and 80.42 %, respectively. These results highlight the importance of preprocessing choices in enhancing fault detection performance using RGB imagery in PV systems.
S
SunView 深度解读
该深度学习故障分类技术对阳光电源SG系列光伏逆变器及iSolarCloud智能运维平台具有重要应用价值。研究证实通过灰度转换+高斯模糊预处理可将RGB图像故障识别准确率提升至94%,可直接集成至iSolarCloud的预测性维护模块,实现鸟粪、灰尘、物理损伤等六类故障的自动识别。该轻量化CNN模型(仅5层卷积)计算资源需求低,适合部署在边缘计算设备中,配合SG逆变器的MPPT优化算法,可实时监测组件异常并动态调整工作点,显著降低电站运维成本并提升发电效率。建议结合无人机巡检系统形成完整智能诊断方案。