← 返回
结合连续学习与多数字孪生机制的物理编码光伏功率预测方法
The physical-encoded Photovoltaic forecasting method combined with continuous learning and multi-digital twins mechanisms
| 作者 | Shuwei Liua · Jianyan Tian · Yuanyuan Daia · Zhengxiong Jia · Amit Banerjee |
| 期刊 | Applied Energy |
| 出版日期 | 2025年1月 |
| 卷/期 | 第 399 卷 |
| 技术分类 | 光伏发电技术 |
| 技术标签 | 储能系统 SiC器件 深度学习 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | A physical-encoded PV forecasting model with strong adaptability is proposed. |
语言:
中文摘要
摘要 端到端神经网络模型通常被视为黑箱模型,已被广泛应用于光伏(PV)功率预测中。然而,这类模型在模型适应性、可迁移性和可解释性方面仍面临挑战。为解决上述问题,本文提出了一种物理编码的光伏功率预测模型,该模型将端到端网络分解为数据驱动的外部参数预测模型和物理驱动的功率计算模型。其中,具有明确物理意义的功率计算模型增强了模型的可解释性。本文设计了一种连续学习机制,使模型能够快速适应环境变化,缓解模型漂移的影响,从而提升模型的适应性与可迁移性。同时,引入多数字孪生协同运行机制,融合其他模型的优势,进一步提高预测精度。模型漂移可分为概念漂移和数据漂移两类。本文设计了两个场景实验以测试这两类漂移。场景1聚焦于概念漂移,实验结果表明,与对比模型的最佳结果相比,本文所提方法在nMAE、nRMSE和R²指标上分别提升了30.5%、16.5%和1.9%。在场景2中,模型被迁移至其他电厂进行数据漂移测试。结果表明,当迁移至电厂4时,其预测精度相较于最优对比方法分别提高了45.8%、21%和2.1%;对于电厂5,提升幅度分别为34.1%、18.3%和2.5%。
English Abstract
Abstract End-to-end neural network models, often seen as black boxes, have been widely used in photovoltaic (PV) power forecasting. However, they face challenges regarding poor model adaptability, transferability, and interpretability. To address these issues, this paper proposes a physical-encoded PV forecasting model, which decomposes the end-to-end network into a data-driven external parameter forecasting model and a physics-driven power calculation model. The power calculation model, with explicit physical meanings, enhances the model's interpretability. A continual learning mechanism is designed to enable the model to quickly adapt to environmental changes, mitigating the impact of model drift and improving adaptability and transferability. A multi-digital twins synergistic operation mechanism is introduced to incorporate the strengths of other models, further enhancing forecasting accuracy. Model drift can be categorized into concept drift and data drift. This paper designs two scenario experiments to test these drifts. Scenario 1 focuses on concept drift, and the experimental results show that the proposed method in this paper achieves improvements of 30.5 %, 16.5 %, and 1.9 % in the nMAE, nRMSE, and R 2 metrics, respectively, compared to the best results of the comparison models. In Scenario 2, the model is transferred to other power plants for data drift tests. Results show that when transferred to Plant 4, its accuracy improves by 45.8 %, 21 %, and 2.1 % compared to the best comparison method; for Plant 5, the improvements are 34.1 %, 18.3 %, and 2.5 %.
S
SunView 深度解读
该物理编码光伏预测技术对阳光电源iSolarCloud智慧运维平台具有重要应用价值。其物理驱动+数据驱动的混合架构可显著提升SG系列逆变器功率预测精度,概念漂移场景下nMAE提升30.5%,跨电站迁移时准确率提升45.8%。持续学习机制能有效应对环境变化导致的模型漂移,增强ST储能系统的充放电策略优化能力。多数字孪生协同机制可融入阳光电源现有预测性维护体系,为1500V系统和PowerTitan储能方案提供更可靠的发电预测,优化MPPT控制策略,降低弃光率,提升电站整体经济效益。