← 返回
保护直流微电网免受网络攻击:基于实时实现的混合物理信息神经网络控制策略
Securing DC Microgrids Against Cyber-Attacks: Hybrid Physics-Informed Neural Network Control Strategy with Real-Time Implementation
| 作者 | Sriranga Suprabhath Koduru · Venkata Siva Prasad Machina · Sreedhar Madichetty · S Mishra |
| 期刊 | IEEE Journal of Emerging and Selected Topics in Power Electronics |
| 出版日期 | 2025年5月 |
| 技术分类 | 光伏发电技术 |
| 技术标签 | 储能系统 SiC器件 微电网 深度学习 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | 直流微电网 虚假数据注入攻击 混合物理信息神经网络 网络攻击检测与缓解 智能微电网 |
语言:
中文摘要
随着绿色可持续能源转型的加速,可再生能源在直流微电网(DC MGs)中的集成日益重要。然而,在应对网络安全威胁的同时确保高效控制仍具挑战性。现有控制设计常忽视对虚假数据注入(FDI)攻击的防御。本文提出一种融合线性卡尔曼滤波器(LKF)与神经网络(NN)的混合物理信息神经网络(HPINN)方法,通过NN校正提升状态估计鲁棒性,实现攻击检测与缓解。该策略在含燃料电池、光伏及储能系统的三节点环网DC MG中验证,结合MATLAB仿真与实时实验,涵盖源荷变化与FDI攻击场景。结果表明,HPINN能有效抵御传感器层面的网络攻击,保障系统安全稳定运行,为下一代智能微电网提供可扩展的防护方案。
English Abstract
As the transition to green and sustainable energy accelerates, integrating renewable energy sources into DC microgrids (DC MGs) is becoming increasingly essential. However, ensuring efficient control performance while addressing cybersecurity threats remains a critical challenge. Communication links and sensors in DC MG are highly vulnerable to False Data Injection (FDI) attacks, yet cyber threat mitigation is often overlooked in control design. This study proposes a Hybrid Physics-Informed Neural Network (HPINN) methodology that integrates Linear Kalman Filters (LKF) with neural networks (NNs) to enhance cyber-attack detection and mitigation. Unlike conventional LKF, which lacks inherent attack mitigation capability, HPINN leverages NN-based correction to ensure robust state estimation and secure control operations. The proposed approach is validated on a supervisory-controlled 3-bus DC MG with a ring main connection, comprising a fuel cell and battery (node 1), a photovoltaic (PV) system and battery (node 2), and another PV system and battery (node 3). The performance is evaluated through MATLAB Simulink simulations and a real-time experimental setup, incorporating source changes, load variations, and FDI attack scenarios. Results demonstrate that HPINN effectively detects and mitigates cyber-attacks, ensuring accurate DC MG operation even under compromised sensor measurements. This work provides a scalable and secure control strategy, reinforcing the resilience of next-generation smart microgrids.
S
SunView 深度解读
该混合物理信息神经网络(HPINN)网络安全防护技术对阳光电源ST系列储能变流器和PowerTitan大型储能系统具有重要应用价值。文章提出的卡尔曼滤波与神经网络融合方案可直接应用于储能系统BMS通信层和微电网EMS控制层,有效抵御虚假数据注入攻击,保障电压电流传感器数据完整性。该技术可集成至iSolarCloud云平台的边缘计算节点,实现实时攻击检测与状态估计校正,提升含光伏、储能、充电桩的多源直流微电网系统安全性。研究验证的三节点环网拓扑与阳光电源工商业储能场景高度契合,为构网型GFM控制策略增加网络安全防护层,推动智能微电网从功能安全向信息安全的全面升级。