← 返回
光伏发电技术 SiC器件 深度学习 ★ 5.0

通过神经网络方法加速钙钛矿太阳能电池的器件表征

Accelerating device characterization in perovskite solar cells via neural network approach

作者 Xinhai Zhaoab1 · Chaopeng Huangae1 · Erik Birgersson · Nikita Suprun · Hu Quee Tan · Yurou Zhang · Yuxia Jiang · Chunhui Shou · Jingsong Sun · Jun Peng · Hansong Xu
期刊 Applied Energy
出版日期 2025年1月
卷/期 第 392 卷
技术分类 光伏发电技术
技术标签 SiC器件 深度学习
相关度评分 ★★★★★ 5.0 / 5.0
关键词 A three-layered ANN can treat the highly non-linear drift-diffusion system in PSCs.
语言:

中文摘要

摘要 钙钛矿太阳能电池是下一代高效光伏器件的有力候选者,尤其适合作为叠层结构中的顶部电池。基于物理机制的光电模型,我们采集了十万量级的大数据样本,用于训练神经网络模型,以高效预测器件性能和复合损耗。在数据准备、模型训练和神经网络优化过程中,分别采用了拉丁超立方采样、贝叶斯正则化和贝叶斯优化方法。最优的神经网络模型在预留的测试数据集上实现的均方误差低于4 × 10⁻⁴。神经网络的计算速度比传统光电模型快一千倍以上。因此,器件快速校准可在24秒内完成。显著降低的计算成本使得高效的器件表征、参数研究、敏感性分析、损耗分析以及优化成为可能。在对实验室自研器件的界面复合进行优化后,实验测得功率转换效率提升了约2%。此外,我们预测带隙分别为1.56 eV和1.63 eV的钙钛矿太阳能电池的理论功率转换效率可达28.9%和25.5%。

English Abstract

Abstract Perovskite solar cells are promising candidates for next-generation high-efficiency photovoltaic devices , especially as top cells in tandem applications. Using a physical-based optoelectronic model, we collect big data of one hundred thousand sample size to train neural network models for efficient prediction of device performance and recombination losses . Latin hypercube sampling , Bayesian regularization , and Bayesian optimization are adopted for data preparation, model training, and optimization of the neural networks, respectively. The best neural network models achieved mean squared errors below 4 × 10 − 4 on a reserved testing dataset . The computational speed of the neural network is more than one thousand times faster than traditional optoelectronic models. As a result, fast device calibration can be conducted in twenty-four seconds. The reduced computational cost allows for efficient device characterization, parametric studies , sensitivity analysis, loss analysis, and optimization. After optimizing interface recombination in our in-house fabricated devices, we observed an experimental improvement of approximately 2 % in power conversion efficiency . Additionally, we predict theoretical power conversion efficiencies of 28.9 % and 25.5 % for perovskite solar cells with band gaps of 1.56 eV and 1.63 eV, respectively.
S

SunView 深度解读

该神经网络加速钙钛矿电池表征技术对阳光电源光伏逆变器产品线具有重要借鉴价值。研究采用的深度学习方法将器件仿真速度提升千倍以上,可应用于SG系列逆变器的MPPT算法优化和iSolarCloud平台的预测性维护功能。通过贝叶斯优化和敏感性分析快速标定器件参数的思路,可迁移至SiC/GaN功率器件的损耗分析与三电平拓扑优化中,显著缩短研发周期。该方法论对提升光伏系统全生命周期效率评估和智能运维能力具有实践指导意义。