← 返回
光伏发电技术 SiC器件 深度学习 ★ 5.0

基于模糊神经网络作为数字孪生核心的光伏设施模型设计

Model design for photovoltaic facilities based on fuzzy neural network as core of its digital twin

作者 William D.Chicaiza · Alex O.Top · Adolfo J.Sánchez · Juan M.Escaño · J.D.Álvarez
期刊 Energy Conversion and Management
出版日期 2025年1月
卷/期 第 342 卷
技术分类 光伏发电技术
技术标签 SiC器件 深度学习
相关度评分 ★★★★★ 5.0 / 5.0
关键词 Neurofuzzy and physics-based models form the core of a PV digital twin.
语言:

中文摘要

摘要 本研究提出了位于CIESOL-阿尔梅里亚的一个光伏(PV)设施数字孪生核心的构建方法。文中提出了两种建模方法:一种是基于等效电路的物理模型,另一种是基于自适应神经模糊推理系统(ANFIS)的数据驱动型神经模糊模型。该神经模糊模型被设计为灰箱系统,具有高可解释性和强适应性,并因其能够快速与物理实体同步,实现对数字孪生框架至关重要的实时行为建模而尤为突出。基于ANFIS的模型能够准确捕捉光伏系统的动态功率输出,适用于基于预测建模的能量管理策略集成。该模型表现出优异的预测性能,最坏情况下的平均绝对误差仅为16.37 W,标准差为126.22 W,标准误差为0.73 W,决定系数达0.99,表明其具有高度的一致性和准确性。与等效电路模型以及先前发表并应用于较低容量光伏系统的人工神经网络模型相比,神经模糊模型展现出更高的精度。具体而言,其归一化平均绝对误差和归一化均方根误差分别为每瓦0.0036和0.0282,优于等效电路模型(每瓦0.01982和0.0520)和神经网络方法。相对于神经网络基准模型,这两项指标分别实现了87.39%和61.55%的相对提升。此外,神经模糊模型所需的计算资源显著更低,适合用于实时应用及工业控制器中的部署。研究结果证实了灰箱神经模糊建模在数字孪生系统中作为核心组件的潜力,为光伏装置的控制、监测与优化提供了可靠、高效且可解释的技术基础。

English Abstract

Abstract This study presents the development of the core of a digital twin for a photovoltaic (PV) facility located at CIESOL-Almería. Two modeling approaches are proposed: a physics-based model using an equivalent electrical circuit, and a data-driven neurofuzzy model based on an adaptive neuro-fuzzy inference system (ANFIS). The neurofuzzy model, designed as a gray-box system, offers high interpretability and adaptability, and stands out for its rapid synchronization capability with the physical asset, enabling real-time behavior modeling essential to the digital twin framework. The ANFIS-based model accurately captures the dynamic power output of the PV system and is suitable for integration into energy management strategies based on predictive modeling. The model exhibits strong predictive performance, with a worst-case mean absolute error of only 16.37 W, a standard deviation of 126.22 W, a standard error of 0.73 W, and a coefficient of determination of 0.99, indicating high consistency and accuracy. When compared to the equivalent electrical circuit model and a previously published artificial neural network applied to a lower-capacity PV system , the neurofuzzy model demonstrates superior accuracy. Specifically, the normalized mean absolute error and normalized root mean square error are 0.0036 and 0.0282 per watt, respectively, outperforming both the equivalent electrical circuit model (0.01982 and 0.0520 per watt) and the neural network approach . These differences represent relative improvements of 87.39 % and 61.55 % over the neural network benchmark. In addition, the neurofuzzy model requires significantly lower computational resources, making it suitable for real-time applications and implementation in industrial controllers. The results confirm the potential of gray-box neurofuzzy modeling as a core component of a digital twin, providing a reliable, efficient, and interpretable foundation for control, monitoring, and optimization of PV installations.
S

SunView 深度解读

该模糊神经网络数字孪生技术对阳光电源SG系列光伏逆变器和iSolarCloud平台具有重要应用价值。ANFIS灰盒模型实现0.99决定系数和16.37W平均绝对误差,可嵌入逆变器实时MPPT优化算法,提升发电效率。其低计算资源需求适配工业控制器,可增强iSolarCloud预测性运维能力,实现光储电站数字孪生建模。相比传统物理模型87%的精度提升,为ST储能系统的能量管理策略提供高精度功率预测基础,支撑源网荷储协同优化决策。