← 返回
一种基于深度学习的多源信息融合方法用于高精度光伏识别:U2-Net图像分割与多光谱筛选的集成
A deep-learning multi-source information fusion method for high-precision PV identification: Integration of U2-net image segmentation and multi-spectral screening
| 作者 | Junyi Yanga · Lihua Zhaoa · Chengliang Xub · Yongjun Sunc · Haoshan Rena · Zichuan Niea |
| 期刊 | Applied Energy |
| 出版日期 | 2025年1月 |
| 卷/期 | 第 401 卷 |
| 技术分类 | 光伏发电技术 |
| 技术标签 | 深度学习 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | Integration of the U2-Net image segmentation model and the multi-spectral screening technique for improved PV identification performance |
语言:
中文摘要
准确的光伏(PV)识别对未来光伏系统的选址和大规模渗透具有广阔的应用前景。本研究致力于通过融合U2-Net神经网络图像分割模型与多光谱光伏筛选技术,提升城市环境中光伏识别技术的精度。U2-Net模型对可见光卫星图像进行图像分割,以获取现有光伏站点的坐标和面积;随后,多光谱筛选技术结合多光谱卫星图像对图像分割结果进行处理,剔除误识别样本。为提高该技术的筛选性能,构建了光伏指数(Photovoltaic Index, PVI)及其归一化表达形式(nPVI)。详细的案例研究表明,所提出的基于深度学习的多源信息融合方法实现了高精度的光伏识别,交并比(IoU)和精确率分别提升了7.13%和8.66%,最终达到91.37%和93.86%。这一改进的原因在于多光谱筛选技术有效滤除了U2-Net图像分割模型产生的假阳性样本。利用所开发的方法,识别了广东省三大城市(即广州、深圳和东莞)的光伏部署情况。结果表明,在工业发展水平较高且土地资源较丰富的区域,光伏样本分布更为密集;而在城市化密度高、空间资源有限的城市核心区,光伏样本分布则较为稀疏。综上所述,所提出的方法有望通过高效利用多光谱数据实现精确的光伏识别,可辅助制定更具针对性的光伏部署策略,指导不同城市情境下光伏安装资源的合理配置,并促进光伏系统与城市规划的融合,从而推动全球可再生能源发展以及可持续城市能源转型的进程。
English Abstract
Abstract Accurate photovoltaic (PV) identification offers a promising prospect for site selection and wide penetration of future PV systems. This study was dedicated to enhancing the precision of PV identification techniques within urban environments through the integration of the U 2 -Net neural network image segmentation model and the multi-spectral PV screening technique. The U 2 -Net model conducted the image segmentation on visible light satellite images to obtain coordinates and areas of existing PV sites. The multi-spectral screening technique then processed the image segmentation results with multi-spectral satellite images to screen out misidentified samples. The Photovoltaic Index (PVI) and its normalized expression (nPVI) were established to improve the screening performance of the technique. A detailed case study showed that the proposed deep-learning multi-source information fusion method achieved high accuracy PV identification with the intersection over union (IoU) and precision increased by 7.13 % and 8.66 %, respectively, reaching 91.37 % and 93.86 %. This was because the false positive samples of the U 2 -Net image segmentation model were effectively filtered out by the multi-spectral screening technique. The PV deployments in the three megacities (i.e., Guangzhou, Shenzhen, and Dongguan) of Guangdong Province were identified using the developed method. The results showed that the distribution of PV samples is denser in areas with a higher level of industrial development and land resources, while in urban core areas with high urbanization density and limited spatial resources, the distribution of PV samples is sparser. In conclusion, the proposed method has the potential to enable accurate PV identification by efficiently harnessing multi-spectral data. It can assist in formulating more targeted PV deployment strategies, guiding the rational allocation of PV installation resources in various urban contexts, and promoting the integration of PV systems with urban planning, thereby contributing to the global advancement of renewable energy development and the realization of sustainable urban energy transitions.
S
SunView 深度解读
该深度学习光伏识别技术对阳光电源具有重要战略价值。通过U2-Net与多光谱融合实现91.37% IoU精度的光伏站点识别,可直接赋能iSolarCloud平台的智能运维能力,实现分布式光伏资产的自动化盘点与监测。识别出的城市光伏分布密度数据可指导SG系列逆变器在高工业化区域的优化部署,并为PowerTitan储能系统的选址规划提供数据支撑。该技术揭示的城市核心区光伏稀疏特征,启发阳光电源开发适配高密度城区的紧凑型1500V系统方案,推动光储充一体化解决方案与城市规划深度融合,助力双碳目标实现。