← 返回
光伏发电技术 储能系统 深度学习 ★ 5.0

基于深度学习的光伏组件红外、电致发光和红绿蓝图像自动缺陷检测

Deep learning-based automatic defect detection of photovoltaic modules in infrared, electroluminescence, and red–green–blue images

语言:

中文摘要

摘要 本研究提出了一种结合图像处理技术与深度学习模型的光伏组件自动化缺陷检测系统。该系统利用三种成像方法——红外成像、红绿蓝成像和电致发光成像,识别21种类型的缺陷。红外成像通过安装在无人机上的热成像仪获取,用于检测热点和开路等热异常现象;红绿蓝成像用于识别玻璃破裂、污渍污染和植被遮挡等表面缺陷;电致发光成像则在受控暗室环境中使用电荷耦合器件相机采集,可揭示微裂纹、电池片性能退化和主栅腐蚀等内部缺陷。通过交叉比对红外图像与红绿蓝图像的结果,可有效识别缺陷成因,而电致发光成像进一步确认内部问题,并提供针对性的改进建议。系统开发分为四个主要阶段:第一,对电致发光图像进行预处理和分割,采用中值滤波、阈值化、边缘检测和透视校正技术;第二,通过颜色空间变换增强红外图像和红绿蓝图像中的颜色特征,以提高检测精度;第三,采用旋转、翻转及生成式技术对图像数据集进行扩充,确保模型的可靠性;第四,采用迁移学习方法训练深度学习模型,并通过交叉验证和超参数调优实现各成像类型下的最优性能。所提出的系统表现出卓越的检测准确率:红外图像中热缺陷检测准确率达99.06%,红绿蓝图像中表面缺陷检测准确率为100%,电致发光图像中内部缺陷检测准确率达到99.2%。每幅图像的平均处理时间小于0.1秒,表明该系统适用于实时及大规模光伏组件检测任务。

English Abstract

Abstract This study presents an automated defect detection system for photovoltaic modules that combines image processing techniques with deep learning models. The system identifies 21 types of defects using three imaging methods: infrared imaging, red–green–blue imaging, and electroluminescence imaging. Infrared imaging, captured using a thermal imager mounted on a drone, detects thermal anomalies such as hotspots and open circuits. red–green–blue imaging identifies surface-level defects, including glass breakage, soiling, and vegetation shading. Electroluminescence imaging, obtained with a charge-coupled device camera in a controlled darkroom environment, reveals internal defects such as microcracks, cell degradation, and busbar corrosion. Cross-referencing results from infrared and red–green–blue images facilitates the identification of defect causes, while electroluminescence imaging confirms internal issues and provides targeted recommendations for improvements. The system development was divided into four main stages. First, electroluminescence images were preprocessed and segmented using median filtering, thresholding, edge detection, and perspective correction techniques. Second, color features in infrared and red–green–blue images were enhanced through color space transformation to improve detection accuracy. Third, image datasets were augmented using rotation, flipping, and generative techniques to ensure model reliability. Finally, deep learning models were trained using transfer learning methods and optimized through cross-validation and hyperparameter tuning to achieve optimal performance for each imaging type. The proposed system demonstrates exceptional accuracy: 99.06% for thermal defect detection in infrared images, 100% for surface defect detection in red–green–blue images, and 99.2% for internal defect detection in electroluminescence images. The average processing time per image is less than 0.1 s, making the system suitable for real-time and large-scale photovoltaic module inspections.
S

SunView 深度解读

该深度学习缺陷检测技术对阳光电源智能运维体系具有重要价值。可集成至iSolarCloud平台,通过无人机红外成像实现光伏电站巡检自动化,结合EL成像诊断组件内部微裂纹与电池衰减,为SG系列逆变器的MPPT优化提供精准数据支持。系统99%以上检测精度和0.1秒处理速度,可显著提升PowerTitan储能系统配套光伏阵列的预测性维护能力,降低热斑等故障对发电效率的影响,支撑阳光电源构建从设备到平台的全栈智能运维解决方案。