← 返回
光伏发电技术 储能系统 深度学习 ★ 5.0

适应光伏波动的动态网络剪枝在低压配电网边缘计算中的应用

Photovoltaic fluctuation-adapted dynamic network pruning for low-voltage distribution network edge computing

作者 Jian Zhaoa · Kai Denga · Xianjun Shaob · Zhibin Zhoub · Fengqian Xub · Xiaoyu Wanga · Yuan Gaoa
期刊 Applied Energy
出版日期 2025年1月
卷/期 第 397 卷
技术分类 光伏发电技术
技术标签 储能系统 深度学习
相关度评分 ★★★★★ 5.0 / 5.0
关键词 This study develops an adaptive pruning framework that tailors network complexity according to the PV output fluctuations.
语言:

中文摘要

摘要 光伏(PV)出力的固有波动性 necessitates 使用高复杂度的深度学习(DL)模型以实现准确预测。然而,此类模型即使在光伏出力稳定期间也以满容量运行,消耗了冗余的计算资源,并加重了低压配电网(LVDN)中资源受限的边缘设备的负担。为解决上述问题,本文提出了一种动态网络剪枝框架,能够根据光伏出力的波动情况自适应地调整深度学习模型的复杂度。首先,提出一种对光伏波动敏感的通道重要性评估方法,用于识别深度学习模型中的冗余结构。随后,构建了一个包含光伏运行约束的轻量化优化框架,根据光伏出力的不确定性及边缘端资源可用性来动态调整剪枝阈值。最后,提出一种动态网络剪枝技术,能够根据低压配电网实时运行状态和光伏出力波动性,自适应地平衡模型精度与计算复杂度,确保剪枝后的子网络与不断变化的光伏数据特征保持一致。实验结果表明,所提出的方法为在边缘设备上部署轻量级深度学习模型提供了一种可行的解决方案。具体而言,在光伏波动剧烈的环境中,该方法能够在精度轻微下降的前提下,有效压缩72%的深度学习模型浮点运算量(FLOPs)。

English Abstract

Abstract The inherent volatility of photovoltaic (PV) output necessitates the use of high-complexity deep learning (DL) models for accurate predictions. However, such models operate at full capacity even during stable PV output periods, consuming redundant computational resources and overloading resource-constrained edge devices in low-voltage distribution network (LVDN). To address the above issue, this paper proposes a dynamic network pruning framework that adaptively adjusts DL model complexity based on PV fluctuations. Firstly, a PV fluctuation-sensitive channel importance assessment method is proposed to identify the redundant structures in DL models. Subsequently, a lightweight optimization framework with PV operational constraints is developed to adjusts pruning thresholds based on PV output uncertainty and edge resource availability . Finally, a dynamic network pruning technique is proposed to adaptively balance model accuracy and computational complexity in response to real-time LVDN operation status and PV output volatility, ensuring pruned sub-networks align with the evolving PV data characteristics . The empirical results show that the proposed method can provide a practical solution for deploying lightweight DL models on edge devices. Specifically, our method effectively compresses 72 % FLOPs of the DL model in PV fluctuation challenging environments with slight accuracy degradation.
S

SunView 深度解读

该动态网络剪枝技术对阳光电源边缘计算场景具有重要应用价值。针对iSolarCloud平台的边缘侧设备,可将该方法集成至SG系列逆变器和ST储能变流器的本地控制器中,根据光伏波动自适应调整深度学习模型复杂度,在平稳期压缩72%计算量,显著降低边缘设备算力需求。该技术可优化PowerTitan储能系统的实时功率预测模块,提升MPPT算法在波动工况下的响应速度,并为低压配电网场景的预测性维护功能提供轻量化AI部署方案,减少云端通信依赖,增强系统自主决策能力。