← 返回
时空特征编码的深度学习方法用于屋顶光伏潜力评估
Spatiotemporal feature encoded deep learning method for rooftop PV potential assessment
语言:
中文摘要
摘要 屋顶光伏(PV)系统是提升城市环境中可再生能源利用的一种有前景的解决方案。准确估算屋顶光伏系统的发电潜力受到复杂城市形态所引起的遮蔽效应的制约,这些效应显著降低了屋顶表面的太阳辐照度,从而导致预测误差。传统的遮蔽模拟方法计算成本高昂,凸显了在计算效率与评估精度之间实现精细平衡的必要性。本研究提出了一种创新的深度学习框架,能够有效编码多种时空数据源,以精确预测阴影投射并计算屋顶光伏潜力。具体而言,基于物理原理的真实数据,结合U-Net网络、三维(3D)建筑细节、太阳能资源数据以及气象参数,使我们能够对屋顶阴影模式的时间变化进行精准预测。这不仅提升了计算效率,也确保了发电量预测的高度精确性。在深圳市福田区开展的实验评估表明,仅遮蔽效应即导致屋顶平均能量损失达5.32%。此外,与基于物理的模型相比,本框架表现出更优越的性能,在年发电潜力预测中平均绝对百分比误差(MAPE)仅为2.85%,在遮蔽效应评估中的平均交并比(mIoU)达到89.23%。同时,该框架相较于传统光线投射法和优化后的光线追踪法分别实现了约158倍和65倍的加速,显示出其在大规模城市能源评估中的高度适用性。本研究的贡献包括:开发了一种用于屋顶光伏潜力评估的新型深度学习框架,提升了城市尺度分析的计算效率,并具备在不同城市环境中保持高精度的强泛化能力。
English Abstract
Abstract Rooftop photovoltaic (PV) systems represent a promising solution for enhancing renewable energy utilization in urban landscapes. Accurate estimation of rooftop PV power generation potential is hindered by shading effects induced by complex urban morphology , which significantly reduce solar irradiance on rooftop surfaces and lead to prediction errors. Traditional shading simulation methods are computationally expensive, underscoring the need for a nuanced equilibrium between computational efficiency and assessment accuracy. In this study, we introduce an innovative deep learning framework that effectively encodes a diverse array of spatiotemporal data sources to accurately predict shadow casting and calculate rooftop PV potential. Specifically, utilizing physics-based ground truth, the incorporation of the U-Net network along with three-dimensional (3D) building specifics, solar resource data, and meteorological parameters enables us to make precise forecasts regarding temporal changes in rooftop shadow patterns. This not only enhances computational efficiency but also ensures a high level of precision in power generation predictions. Experimental assessments carried out in Futian District, Shenzhen, reveal that shading effects alone result in an average energy loss of 5.32 % across rooftops. Moreover, our framework demonstrates superior performance compared to physics-based models, achieving an average Mean Absolute Percentage Error (MAPE) of 2.85 % for annual energy generation potential and a mean Intersection over Union (mIoU) of 89.23 % for shading effect evaluation. In addition, the proposed framework achieves approximately 158 × and 65 × speedup over traditional ray-casting and optimized ray-tracing methods respectively, highlighting its strong suitability for large-scale urban energy evaluations. Our contributions encompass the development of a novel deep learning framework for rooftop PV potential assessment, enhanced computational efficiency in urban analyses, and a resilient generalization capability with high accuracy across various urban settings.
S
SunView 深度解读
该时空特征编码深度学习框架对阳光电源屋顶光伏系统规划具有重要价值。研究通过U-Net网络精准预测建筑阴影对发电量的影响(平均损失5.32%),可优化SG系列逆变器的MPPT算法在遮挡工况下的功率追踪策略。158倍的计算加速能力可集成至iSolarCloud平台,实现大规模城市屋顶光伏资源快速评估与选址优化。结合ST系列储能系统,可根据阴影预测动态调整充放电策略,提升系统经济性。该方法为分布式光储一体化项目前期勘察提供高效技术工具。