← 返回
基于深度学习的分布鲁棒联合机会约束配电网光伏承载能力评估
Deep learning-based distributionally robust joint chance constrained distribution networks PV hosting capacity assessment
| 作者 | Zihui Wanga1 · Yanbing Jiaa2 · Xiaoqing Hana3 · Peng Wangb4 · Jiajie Liua5 |
| 期刊 | Applied Energy |
| 出版日期 | 2025年1月 |
| 卷/期 | 第 394 卷 |
| 技术分类 | 光伏发电技术 |
| 技术标签 | 储能系统 深度学习 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | Proposing an augmented time-series GAN to model spatiotemporal uncertainties. |
语言:
中文摘要
摘要 随着分布式光伏(PV)在配电网(DNs)中的渗透率不断提高,评估光伏承载能力(PVHC)以确保配电网安全运行变得至关重要。本文提出了一种数据驱动的分布鲁棒联合机会约束(DRJCC)配电网光伏承载能力评估框架。首先,引入基于时空注意力、投影、监督和Transformer架构的生成对抗模块,构建一种增强型时间序列生成对抗网络(ATS-GAN)。该网络通过在联合训练过程中融合监督学习与无监督学习,能够更好地捕捉光伏与负荷功率的时空特征。随后,利用ATS-GAN构建以生成器神经网络所诱导分布为中心的、基于Wasserstein度量的光伏与负荷功率概率分布的模糊集。其次,提出了DRJCC-PVHC评估模型。采用Bonferroni不等式与条件风险价值近似的组合方法,将多变量DRJCC模型转化为可高效求解的锥优化形式。数值结果表明,所提出的方法能够有效捕捉多变量分布在多种约束下的时空特征与不确定性,显著降低了传统分布鲁棒单个机会约束通常存在的保守性。
English Abstract
Abstract As distributed photovoltaic (PV) penetration in distribution networks (DNs) is increasing, it is essential to assess the PV hosting capacity (PVHC) to ensure the safe operation of DNs. This paper proposes a data-driven distributionally robust joint chance constrained (DRJCC) distribution networks PVHC assessment framework. Firstly, the spatiotemporal attention, projection, supervision, and Transformer architecture-based generative adversarial blocks are introduced to develop an augmented time series generative adversarial network (ATS-GAN), which, by integrating both supervised and unsupervised learning during the joint training process, better captures the spatiotemporal characteristics of PV and load power. Subsequently, leveraging the ATS-GAN, a Wasserstein metrics-based ambiguity set of PV and load power probability distributions is constructed, centered on the distributions induced by the generator neural network . Secondly, the DRJCC PVHC assessment model is proposed. A combination of the Bonferroni inequality and conditional value-at-risk approximation is adopted to transform the multivariate DRJCC model into a tractable conic formulation for efficient computation. Numerical results demonstrate that the proposed method effectively captures the spatiotemporal characteristics and uncertainties of multivariate distributions under multiple constraints, significantly reducing the conservatism typically associated with distributionally robust individual chance constraints.
S
SunView 深度解读
该分布鲁棒联合机会约束光伏承载力评估技术对阳光电源SG系列逆变器和ST储能系统的配置优化具有重要价值。论文提出的ATS-GAN时空特征捕捉方法可应用于iSolarCloud平台,提升多点分布式光伏出力预测精度。分布鲁棒优化框架能指导PowerTitan储能系统在配电网中的容量配置,通过联合机会约束降低保守性,在满足电压、电流等多重约束下最大化光伏接入容量。该方法可与阳光电源GFM控制技术结合,实现源网荷储协同优化,提升配电网新能源消纳能力和系统安全裕度。